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Problem Statement

Consider the multi-class Kernel classifier, the generalization of the 2-class Kernel classifier to datasets
D with multiple classes C. In this project, the data D that we analyze is the seeds dataset found in the
UCI Machine Learning Repo [1], a set of attributes and classifications derived from the kernels of three
types of wheat: Kama, Rosa, and Canadian. D was robustly collected via the analysis and gradient
clustering of wheat X-ray images in [2], defined by the collection:

D =
{
x ∈ D ↪→

[
A P c l w as lg

]T
∈ (R1×|D|)7 ∼ R7×|D|

∣∣∣∣ C ∈ {0, 1}|D|×3
}

C =
[
C(i,j) = 1 χ⇐⇒ xi ∈ Cj ⊂ D

]
∈ {0, 1}|D|×3

The collection D contains the classification matrix C of the three classes corresponding to wheat species,
A the cross-sectional area of the seed kernel, P the perimeter of the seed kernel, c the compactness of the
seed kernel computed by the nonlinear function c(A,P ) = 4π · A/P 2, l the length of the kernel, w the
width of the kernel, as the asymmetry coefficient, and lg the length of the kernel groove with |D| = 210 and
classes |Ci| = 70 for i ∈ {1, 2, 3} ⊂ Z. D is a separable dataset (as seeds of equivalent wheat species share
approximately similar attributes), so that the technique of Kernel classification/clustering is hypothetically
effective. Hence, we aim to train a multi-class Kernel classifier to accurately classify/partition the seeds
dataset D =

∨
i Ci as a function of attributes x = (A,P, c, l, w, as, lg) ∈ R7.

Machine Learning Model

To derive the multi-class Kernel classifier, we apply the duality of representations between linear classifica-
tion model and multi-class Kernel classifier.

y(x) = WTφ(x) ⇐⇒ y(x) = k(x)T (K + λI)−1T

Training the weight matrix W ∈ R7×3 and taking x ∈ Ci ⇐⇒ i = argmax
k

yk(x) classifies x ∈ D.

Define the classification vector/target tn = CT(:,n) ∈ R3 of xn ∈ D and the λ-regularized least-squares
error/optimization measure on the training data D.

J(W) = 1
2

|D|∑
n=1
‖WTφ(xn)− tn‖2 + λ

2 ‖W‖
2
F

αn = − 1
λ

[
WTφ(xn)− tn

]
∈ R3 =⇒

[
Woptimal = − 1

λ

∑
n

φ(xn)(WTφ(xn)− tn)T =
∑
n

φ(xn)αT
n = ΦAT

]
Φ =

[
φ(x1) · · · φ(xn)

]
∈ R7×|D| A =

[
α1 · · · αn

]
∈ R3×|D|
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Reformulating the least-squares algorithm by substitution of Woptimal = ΦAT into J(W) implies that:

T = C =

t
T
1
...
tTn

 ∈ {0, 1}|D|×3 =⇒ J(A) = 1
2AΦTΦΦTΦAT −AΦTΦT + 1

2T
TT + λ

2AΦTΦAT

K = ΦTΦ =
[
Knm = φ(xn)Tφ(xm)

]
∈ R|D|

2 =⇒ J(A) = 1
2AKKAT −AKT + 1

2T
TT + λ

2AKAT

Apply the previous equations λαn = tn −WTφ(xn) and W = ΦAT with Kernel matrix K = ΦTΦ and
kernel vector k(x) =

[{
φ(xn)Tφ(x)

}|D|
n=1

]
= ΦTφ(x) ∈ R|D| implies that:

λαn + WTφ(xn) = tn =⇒ λαn + AΦTφ(xn) = tn
∀xn∈D=====⇒ λA + AΦTΦ = TT =⇒ AT

optimal = (K + λI)−1T

AT
optimal =⇒

[
y(x) = AΦTφ(x) = φ(x)TΦAT = k(x)T (K + λI)−1T

]
Hence, the duality of optimization methods between multi-class linear basis classifiers and multi-class Kernel
classifiers is proved. In the context of this project, we design the τ -normalized Kernel matrix/function with
the Vandermonde polynomial term vector V(x) and component-wise Hadamard product ◦ : Rn×Rn → Rn
as the Gaussian radial basis kernel function k(xn,xm):

φ(x) = e
− ‖x‖2

τσ2
x ·
[(√

1
n! · σ2n

x

∣∣∣∣ n = order[V(x)i]
)
i

]
◦ V(x)

=⇒
[
Knm = k(xn,xm) = φ(xn)Tφ(xm) = e−‖xn−xm‖2/τσnσm

]
σn is chosen as the distance ‖xn − xn(k)‖ ∈ R of xn ∈ D to the k-th nearest neighbor xn(k) of xn for
some optimal k ∈ {2, . . . , 20} ⊂ Z and parameters λ, τ ∈ R.

The Kernel classifier model y(x) = k(x)T (K + λI)−1T of complexity O(|D|2.376) (because of the in-
version (K + λI)−1 through Coppersmith–Winograd inversion algorithms) is chosen over support vector
machines (SVM), linear classifiers, and perceptrons/neural networks (NN) because it balances compu-
tational complexity and optimization precision. D is not linearly separable, so linear models rely on
previous knowledge of the nonlinear, non-convex feature map φ that is difficult to determine. SVMs
require a combination of nonlinear-iterative, kernel, and maximum margin (one-versus-all) methods with
complexity O

[
max(|D|,dim(R7)) ·min(|D|,dim(R7))2] ∼ O(|D|2.376) and multiple convex inequality

constraints, which are difficult to solve for multi-class datasets D. Likewise, neural networks utilize
complex yet adaptive stochastic gradient descent training with complexity O(K · |D| · |W|)� O(|D|2.376)
(in this particular case, because |W| � |D|) but provides minimal control over learning cycles K ∈ Z or
optimality/accuracy α ∈ [0, 1] compared to the Kernel classifier that retrieves an optimal solution for the
model. Hence, the Kernel classifier is the optimal choice for the separable dataset Dseeds.

Classification Algorithm

To implement the multi-class Kernel classifier, we train/compute the Kernel matrix K with the kernel
function k(xn,xm) = φ(xn)Tφ(xm) = e−‖xn−xm‖2/τσnσm and classification training matrix T that contains
|Dtrain| = 90 data-points consisting of |Ci,train| = 30 points per class Ci for i ∈ {1, 2, 3}. Subsequently,
we simulate the Kernel classifier y(x) = k(x)T (K + λI)−1T on the test dataset Dtest = D −Dtrain with
|Dtest| = 120 data-points consisting of |Ci,test| = 40 points per class Ci for i ∈ {1, 2, 3}. Optionally,
we normalize the attributes/components (A,P, c, l, w, as, lg) of the dataset D to fixed variance σattr =
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σ{A,P,c,l,w,as,lg} = 0.0048 such that the Gaussian radial basis kernel function weights the measure/distance
of the attributes in classification without bias. Accuracy/performance α of Kernel classification is computed
by:

α(D) =

∣∣∣∣{x ∈ D | x ∈ Ci ∧ i = argmax
k

yk(x)
}∣∣∣∣

|D|
∈ [0, 1]

Multi-Class Kernel Classifier Algorithm

(a) Define the training classification matrix T = Ctrain =

 |
{tTn,train}

|Dtrain|
n=1
|

 ∈ {0, 1}|Dtrain|×3.

(b) Optional: Normalize the dataset D to σattr.
(c) Compute k-th nearest neighbors x ∼knn {xk} and distances σk = ‖x− xk‖ for all x ∈ D.
(d) Compute the Kernel matrix K.

K = ΦTΦ =
[
Knm = k(xn,xm) = φ(xn)Tφ(xm) = e−‖xn−xm‖2/τσnσm

]
∈ R|Dtrain|
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(e) Compute the matrix (K + λI)−1T ∈ R|Dtrain|×3.
(f) Compute the kernel vector k(x).

∀x ∈ Dtest =⇒ k(x) =
[{
k(xn,train,x) = φ(xn,train)Tφ(x)

}|Dtrain|
n=1

]
∈ R|Dtrain|

(g) Classify x ∈ Dtest and compute α(Dtest) via Kernel classifier y(x) = k(x)T (K+ λI)−1T and classifica-
tion algorithm x ∈ Ci ⇐⇒ i = argmax

k
yk(x).

Result and Analysis

Fig. 1 – PCA Projection/True Classification of D Fig. 2 – Kernel Classification of D

Executing the Kernel classification algorithm on Dseeds induces an optimal classification accuracy of
α = 91.67% with parameters τ = 8, λ = 1, and k = 2. The classification accuracies for various combinations
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of parameters are reported:

Table 3
λ 1 1 10 10 0.5 1 100 1 1
τ 1 8 10 10 8 0.2 8 20 20
k 2 2 2 10 2 20 3 2 20

α(D) 90% 91.67% 90.83% 89.17% 90.83% 88.33% 90% 83.33% 87.5%


It follows that the Kernel classifier is sensitive to changes in normalizer τ and the k-th nearest neighbor
xk ↔ σk in the kernel/correlation function k(xn,xm, τ) = e−‖xn−xm‖2/τσnσm , which is expected because
the kernel function defines the classification mechanism of the Kernel classifier. In accordance to hypothesis,
the Kernel classifier is an effective model to classify or cluster the dataset Dseeds. However, it appears that
the classifier y(x) = k(x)T (K+λI)−1T is limited to a certain accuracy (∼ 90%) before the Kernel method
cannot be further optimized in the context of cluster analysis, perhaps because the Kernel classification
technique is unintelligent to particular outliers in the Kama or Canadian wheat species regardless of
parameter tuning. Instead, pure k-means and gradient clustering techniques produce superior classification
accuracies that average to ∼ 94%. [2] In any case, we conclude that Kernel classification is a viable and
relatively accurate method to classify or cluster approximately separable multi-class datasets.

Fig. 4 – 3-D PCA Projection and Classification of D

Extra: Limitations of Kernel Classifier

Attempting to apply the Kernel classifier to an inseparable/disconnected dataset produces fascinating
results. Fig. 5 demonstrates a dense dataset Dwine ⊂ R11 that cannot be clustered or classified with the
Kernel classifier. In particular, there exists a unknown wine-quality function q(x) ∈ {0, 1, . . . , 10}R11 that
measures the quality of wine from 11 separate attributes, various combinations of which can simulate
high-quality wine. To learn the multi-variate function/classifier q(x), a multi-layer neural network or
advanced regression model beyond the scope of the Kernel method is necessary.
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Fig. 5 – PCA Projection of Inseparable Wine Quality Dataset Dwine
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