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SOLUTIONS OF CHAPTER 2

1. Consider the function z : ® — R for fixed € R™ and ¢ € (0, 00)
z(s) = u(x + bs,t + s)e”

Then
2(s) = % =e“(b- Dyu(z + sb, t + s) + w(x + sb,t + s) + cu(x + sb,t +s)) =0

by the condition given by the problem. Therefore, z is a constant function with respect to s. Finally, by
using the fact that «w = g on ®" x {¢t = 0}, we conclude that

u(z,t) = 2(0) = 2(—t) = u(z — tb,0)e" " = g(x — th)e

2. Let O = (a;5) and ¢(z) = O - z. Then it’s clear that D¢(xz) = O. Since v is defined to be
v(z) =u(O - x) = (uo d)(x), we calculate

Dv(z) = Du(é(x)) - Dé(x) = Du(O - x) - O
Then v, (z) = 327, us; (¢(2))aji. Note that by the same calculations, we have
D(ug; © ¢)(x) = Dug,(¢(z)) - O
Therefore
Vg, (T) = %vm (x) = z”: 8%%1 ))aji = Zaﬂ Zu%wk ))Gki) Z AjiQkiUs o, (P(T))
v j=1 """ j=1 j,k=1
The laplacian of v is
2) =2 Vi (@) = 3 (D @ihitta;n, (6(@))) = 3 (aan (6 Z
i=1 i=1 jk=1 k=1

Since O is an orthogonal matrix,

Ootherwise

- lifj =k
Z Qi Qs = .
i=1
Lastly, we conclude our proof with

(U2, (#(2)) = Au(¢(z)) = 0

n

J



since wu is harmonic.

3. We'll modify the mean value property for harmonic functions. It is assumed that the reader know
the proof of the mean value property(Check Evans PDE 2.2.2; Mean Value Formulas). As in the proof
in the book, define

1
o(s) = 7/ u(y)dS
(s) el T Sy (y)dS(y)
Then the book proves
1
@'(s) = 7/ Au(y)d
)= T o, S0
Since Au = —f in B(0,r)
l -1 /
s) = d
?(e) na(n)s—1 B(O,s)f v)dy

for any € > 0. Note that

o) =t [ )i
1
) /m,e) u(w)dS ()
= u(0) (3.1)

Let’s calculate [ ¢'(s)ds

/6 " ls)ds = / mm_)in_l /B o fy)dyds

-1 / " 1
= — f) / —y dsdy
na(n) B(0,r) maz(|y|,e) st

In the last equality, we changed the order of integration. Note that

s=r

/T 1 -1 1 1 1
ds =
¢ sn—1 (n—2)sn2 )

= (Cn72 o 7’”72)

T n-—2

Therefore

" 1 " 1
¢'(s)ds / fly / dsdy
/e ( ) na(n) B(0,r) ( ) maz(|y|,€) sn—t

-1 o1 "1
- (f 1) [ mpdsdy+ [ f) [ rdsay)
na(n) ) go.m-B,) y 8"t B(0,¢) e smt
1

-1 1 1 1 1 1
~ na(n) (/B(o,r)—B(o,e) f(y)n - 2(|y|”‘2 o2 Jdy + /B(O,e) f(y)n — 2(671—2 T2 )dy) by (3.2)
—1 1 1 1 1
= — — - —)d — ———d
et oy TG )+ /| o TG~ )

Suppose that we proved

. 1 1
lim 67172 o |y|n72

)y =0 (3.3)
e—0 B(O,C)



¢(r) —u(0) = lim¢(r) —¢(e) by (3.1)

= lim [ ¢'(s)ds

e—0 e

. -1 1 1 1 1
= iZ_T)’% 71(71—2)@(%)(/13(o,r) f(y)(W - W)dy + /B(O,e) f(y)(enj - W)dy)
-1 1 1
= B o O
Therefore
1 1 1
u(0) = &(r)+ 71(712)01(”)/3(0,70 f(y)(W - ﬁ)dy

1 1 1 1
~ na(m)rt /aB(o,ﬂ ) et /B(O,T) Fl = — )

But u = g on 0B(0,r), so the equality holds. So we only need to prove (3.3)

, 1 1 1 . f(y)
lim fly ——7dy:lzm—/ fy)dy — lim
<=0 JB(0,e) ( )(6"72 \Z/|"72) =0 €2 Jp.e) ) =0 Jp(0,e) [y 2
But
1 1
lim / fly)dy = limnaln 627/ fy)dy
e—0 6n—2 B(0,€) ( ) €e—0 ( ) m(B(O,e)) B(0,¢) ( )
= limna(n)e*f(0)
e—0
= 0
and
lim % = lim/ / fsly)2d5(y)dt
=0 JB(0,¢) |yl =0 Jo Jasou Yl
€1
= lim/ / fy)dS(y)dt
=0 Jo "2 Jop(o.) ()d5(y)
€ 1
= lim nanti/ fy)dS(y)dt
=0 Jo (n) m(0B(0,t)) Jop(o,) ®)dS()
= iz_%t ; na(n)tf(0)dt
‘ €
= limna(n)f(0)3
=0
Therefore 1 1
li — - ——)dy =
8 o )= |y‘n_2) y=0

so we are done.

4. First note that U and QU is compact, since U is bounded and open. So mazru = supu on
both U and OU. Define u. := u + ¢e|x|? for each ¢ > 0. Then for x € U, ggf = Uy, + 2€x;, SO
Au, = Au + 2ne = 2ne > 0 since u is harmonic and ¢ > 0. But tr(Hess(uc)) = Auc(z) > 0,
so Hess(ue)(x) is cannot be negative definite matrix. Therefore, 2 cannot be local maximum of the

function u., so u cannot attain its max within U. Therefore, we conclude that

max e = Max Ue
T U



Since we know that U is bounded, we can assume U C B(0, R) for some R > 0. Then

maxru < max u. = max u. < maxru + max e\x|2 < maxu—+ eR?
T T U U U oU

Let € — 0, then mazru < Mz u. Since OU C U, we conclude maxu = AT U
U U

5. (a) As in the proof in the mean value property (or in the problem 3), define a function

1
P(s) = W /83(1,5) v(y)dS(y)

then the book proves
1

O =t /B Ay

so ®'(s) > 0 since Av > 0. Therefore ®(r) > ®(e) for all » > e > 0. But lim v(e) = v(x) since P is an

e—0
average integral of the function v.

(b) Assume that U is connected. Let M := max u and S = {z € Ulv(z) = M}. If S is an empty
set, then clearly max = H}aagc u, so we are done. Assume that S is not an empty set. We'll prove that S
U

is both open and relatively closed, which will led us to say S = U since U is connected. Let a € S and
d > 0 such that B(a,0) C U. Then for all 6 > ¢ >0

1
o(@) = ———— /a oy, S < 2(@)

na(n)sn—!

therefore v = v(a) within B(a,d), ie B(a,d) C S, so S is open. Moreover S is relatively closed since u is a
continuous function. Thus S = U, i.e. u is a constant function in U, and also in U since w is continuous.

Therefore max = max u. Since this is true for all connected parts of the nonconnected open set U, we

U
can say max = max Uu.
T U

Second way
If U were bounded, we could use problem 4. Define v.(z) = v(x) + €|z|?. Then Av. = Av + 2ne > 0, the
rest are the same.

(c) We do straight calculation
v Op(u)

or; 0w ¢/ (w)ua,
So 2
022 = ¢" (wuz, + ¢ (w)ts,q,
Therefore

n

Av = ¢"(u)(2ui) +¢'(u)Au >0

i=1

(d) Follow the calculations

n
v=|Dul* = Zui
i=1

n
Ov
e E 2Ug, U,
ki



2 n
ﬁ =92 2 4
81‘2 - uzizk ul’il’kl’k
k i=1

Av =2 z”: U, + zn:Auxi > zn:Auwi
i=1 i=1

ik=1

Since w is harmonic, u,, is harmonic for all i = 1,2,...,n. Thus Av > >"" | Au,, =0

6. Since U is bounded, we can assume that U C B(0, R) for some fixed R > 0. Choose C such that
C > max(1, %ﬁ) Let’s define A := max |f| (7?7 can we, can f be extended continuously over U) Since
U

Au+ )\%) =Au+nZ >0u+ )\% is subharmonic. By the problem 5

(ur AL (ur AL
max (u —_ = max (u —_—
T 2n aU 2n
R2
< max|u| + A—
U 2n
2
<

191+ maxc 7]
max —maXx
oU g 2n

<
< C(maxlg| +mg><|f|)

7. We are assuming that u is harmonic in an open set U satisfying B(0,7) C U C R™. Let’s write
the Poisson’s formula z € B(0,r),

FRNELELL o G0

na(n) B, 17—yl

Note that by the triangle inequality
r ol =yl 4 o] > |z -yl =yl = [zf] =7 — |
for y € 9B(0,r). Moreover,
/ u(y)dy = na(n)r™tu(0)
8B(0,r)
by the mean value property of the harmonic functions. Then

_ 2 _ 2 2 _ 2
n—2 r |ZC‘ _1u(0) _ r |‘T| / u(y) ndy S r |.’E| / u(y) ndy _ U(.’E)
(r+ [a[)" no(n)  Japo.rn (r+ |z) na(n)  Japo.n 17—yl

Similarly

nea T+ |2l r? — |$|2/ u(y) r? — |JJ|2/ u(y)
—u(0) = — 111 dy > dy = u(x)
(r—Jz)n=t na(n)  Jopo,n (r—|z)" na(n)  Jopor T —yl™

8. (i) We'll prove the Theorem 15 in the chapter 2.2. Take u = 1 in B(0,r) and consequently g = 1
on 0B(0,r), then by theorem 12 (Representation Formula using Green’s function), for any @ € B(0,r)

1= u(z) = / o(y)K (2,y)dS(y) = / K (x,4)dS(y) (8.1)
OB(0,r) oB(0,r)

Let’s back to the problem. First, we shall show that u,, exist and it equals to faB(o " 9(y) Ky, (z,y)dS(y).
It’s enough to show that
. u(x + he;) —u(x)
lim = 9(Y) Ko, (2,y)dS(y)
OB(0,r)

h—0 h



Let’s denote

u(w+hey) —u(x) K(z + hei,y) — K(z,y)
e Sl 0] ; )ds(y)

By Mean Value Theorem, K (z + he;,y) — K(x,y) = hK,, (x +v(h),y) for some 0 < y(h) < h. Therefore

v(z, h) = / 9(Y) Kz, (x + (), y)dS(y)
0B(0,r)

o) = [ K @)aSw = [ o) (Ke o))~ Ko () dS0)
oB(0,r) 9B(0,r)
Let y := dist(z,0B(0,r)) = inf {|z — y| |y € dB(0,r)} and consider the continuous function K, (z,y)
on the compact set U(0,r — &) x 9B(0,7). Thus K,,(z,y) is uniformly continuous. Also, since g is
continuous in the compact set 9B(0,r), g is also bounded. Assume |g| < M. Choose € > 0. Since
K., (z,y) is uniformly continuous, there exist 6 > 0 such that |(z1,71) — (2,¥2)|gen < ¢ implies
| Ky, (x1,y1) — Ky, (22,92)| < € Thus, for h < min {p,d},

|v(x,h)—/aB(0 )g(y)Km(sc,y)dS(y)! = |/BB(0 )g(y)(Kmi(:c+v(h),y)—Kxi(%y))ds(y)‘
dB(0,r)
= /83(0 ) 9Kz +7(h), y) = Ko (2,)]dS(y)
<

[ lewleds)
OB(0,r)

< Mena(n)r"*

u(z+he;)—u(x)
h

which goes 0 as € goes 0. Therefore lim exist and it equals to fBB(O ) 9(y) Ko, (x,y)dS(y)
h—0 a4

In the same way, we can prove for all o = (a1, ag, ..., ay),
Dru(e) = [ gy)D"K(w.y)dS()
dB(0,r)
since K is smooth, so is u, i.e u € C*(B(0,r))
(i) By (i), we can say Au = fBB(O " g(Y) ALK (z,y)dS(y). But AyK(z,y) = 0 within B(0,r) (I

may add calculation) so Au =0

(iii) We'll follow the similar path as in the proof of the theorem 14. Let € > 0, since g is continuous,
choose ¢ > 0 such that |y —2°| < § implies |g(y) — g(2°)| < e. Moreover, since g is defined in the compact
set 9B(0,7), it is bounded, assume |g| < M. By (8.1),

u(z) — g(«°)]

| 9K (z,y)dS(y) — / 9(2°)K (z,y)dS(y)|
aB(0,r) 8B(0,r)

| (9(y) — 9(a°)) K (,y)dS (y)|
o0B(0,r)

IN

/ 19(y) — 9(2*)| K (z,4)dS (y)
9B(0,r)

/ 19(y) — 9(a®)|K (2, )dS(y) +
8B(0,r)NB(z0,5)

/ l9(y) — 9(=°) | K (2, )dS (y)
OB(0,r)—B(z",6)

I+J



Clearly I < [55(0.,)n5@0.5 K (@ 1)dSWY) <€ [550, K(,y)dS(y) = € also by (8.1). Furthermore,
if |z — 20 <  and |y — 2°| > 4, we have

5 1
\y—xol<Iy—x|+lx—x0|<|y—x|+§<|y—xl+§|y—x|

therefore |y — x| > %]y — 2], so

2ofaf? 2n(R—fef) 12— [af?)
na()lz—y" = na(n)  Jy—2F = na(n)o"

}((xay)::

for |z — 2° < £ and y € 9B(0,r) — B(z°,§). By the triangle inequality, we have |g(y) — g(z°)| < 2]M.
So finally

2"(r? — |2[?)

J < 2M dS(y)
2B(0,r)—B(20,5) T(n)d"
on 2 _ 2

< ZMMna(n)r"_l

na(n)o”
2n+1A4Tn—l
(2 |2
G
which goes 0 as z goes 20 since 2° € dB(0,r) so |z| — [2°] =71
9. By Poisson’s formula for the half space, for x = (z1, 22, ...,x,) € R

o, 9(v) 2, i@
) = 2205 ooy TP = ey s T

where § = (y1, 2, .-, Yn—1) € R"* for y = (y1,¥2, -, Yn—1,0) € ORT. Let’s put = = Ae, = (0,0, ..., ),
then |z — y|? = |§|® + A2, therefore the equality becomes

2 . A -
u(Aep) = m /w—l g(y)Wdy

We’ll compute the partial derivative of uw WRT x,, at x = Ae,,.

Uy, (Aen) = %u(x\en)

g 2 . A .
= na() /% IO GE s ® (9.0)
2 ) A
= — — () ————dj
na(n) /Wfl (’))\g(y)(‘gﬁ T A2)5H Y

_ 2 37 = (=12
= /ng(y)

no(n) |52 + A2|5+1

B it~ ¥
- nan/ /@BMM (o + g en @) (0-1)

r?2 — (n —1)\2
= )————=—dS(g)d
na(n / /Bn 1(0,r) 9(9) (r2 +22)z+! (9)dr

At (9.0), we used the fact in the proof of the theorem 14, which is wu,, ( fa%" K., (z,y)dy

At 9.1, we used polar coordinates. B"~1(0,r) denotes the open ball centered at origin W1th radlous r in

R"~1. Define functions

T2

fi(r,A) = ABHI(O’T)Q(?J)WdS@)



and
—(n—1)\?

fa(r,A) = /a)Bn—l(o,r)g(g)WdS@)

Note that
(e’ 1 (e’ 1
ta, (Aen) = / Fulr Ndr + / Fi(r Ndr + / Folr, Ndr + / Folr, Ndr
1 0 1 0

Assume that we know [ f1(r, \)dr, [ fo(r, \)drand [ fo(r, \)dr are bounded and lLim oy fi(r, Ndr =
—

00. Then we can conclude that u,, (Ae,) — 0o as A — 0; therefore Du(Ae,,) is not bounded near 0. Let’s
prove the assumptions. Since we know g is bounded, we assume |g| < M

o0 [e'e] 2
neva| < [ f 90) —— st | dS(H)dr
/1 1(nA) 1 JoBn-1(0,r) ( )(7’24'/\2)2+1 @)
e} 7,2
< M/ / ————dS(g)dr
1 Jopn-10,) (12 4+ A2)2H %)
[ee) 2
_ n—2 T ~
= M/1 (n—1Da(n—1)r 7(7“2 SvEE dS(g)dr
oo ,r'n,
= M(n — 1)04(71 - 1)/1 (T2 I )\2)%4_1 dr (92)
r
<

M(n—l)a(n—l)/loo(

ST 2§dr
r2 4+ A?)2

= M(n—1)oz(n—1)<(7ﬂ2;1)\2)é 1 )
- M(n—l)a(n—l)ﬁ

< Mm—-1an-1)

Note that at (9.2), we used the inequality

r’ r r nt r
ny] 3 1 <——==
(r2 + \2)5+ (r2 4+ A2)3 \ (12 + A2)3 (r2 + \2)3
We find that floo fi(r, A)dr is bounded. For the second assumption
—(n—1)A2

fa(r, N)dr| < / / 9(J)—=——=F—1dS(y)dr
’/1 2(r.A) 1 JoBn-1(0,r) ( )(7'24')\2)2“ @)
i 1
< Mn—m?/ / — _dS(g)dr
( ) ) 9Bn—1(0.r) (r2+)\2)5+1 (9)
o] n—2
_ 2 2 r

> r

< M(n—1)2a(n— 1))\2/1 mdr

M(n —1)2a(n — 1)\? <(742+1A2) 1 )
= M(n—-1)>a(n— 1))\2/\7_'_1

IN

M(n —1)%a(n —1)
At (9.3) we used the inequality

—_
<

wleo

Tn—2 B r r 71—17 < -
(P +22)3+ 2 123 \ (12 4 a2)3 T2 T (12 4 \2)



The inequality is true for » > 1, which is enough since we integrate from 1 to co. For third assumption,
realize that for r <1

o —(n—1)\2 . 9 9 1
fa(r) /e>Bn1(o,r) \Z/|(T2 npOEE 5(9) A (n—1)%a(n )(TQ i

Since g(g) = |g| for |g| < 1. Therefore

- T
‘/1 fa(r, Nydr| < AQ(n71)2a(nf1)/0 (r?lﬁ
< Xn-1)%an—1) /01 W (9.4)
= (= DPal - Vs
< %(n ~1)2a(n - 1)

At (9.4), we used the inequality

rnl B r r n2 < r
(r2 4+ A2)2 L (r2 £ \2)2 (r2 _,_)\2)% = (r2 + \2)2

since n > 1.
Let’s prove the last assumption. For r < 1

2
e = o) S

2

T
= J| 555 dS (7
/E)B"l(O,r) g (r2 +A2)5H @

3

r
= ——7—=dS(y
/BB"—l(O,T') (7“2 + )‘2)54_1 (y)

3

(r2 + 22) 5+
T,n+1

(r2 Jr/\z)%—s-l

= (n—1a(n—1)r"2
= (n—1Dam-1)

since g(g) = |g| for || < 1. Let (n — 1)a(n — 1) = p. Then

1 ,r.n+1
—————dr
“/0 (12 + A2)3H
1 ,rn+1
————d 9.5
H//\ (r2 +\2)3+1 " (9-5)

1
1 1
nf g

1
/ fi(r, Ndr
0

\%

%

I
- “FA P
2

_ 22 (log(r) :)
- 2,%(—1090\))




which goes infinity as A — 0. Note that at (9.5), we used inequality

it 11
> —
(r2+A2)5F1 = 251y

which is equivalent
(2T2)%+1 2 (7‘2 + )\2)%+1

which is true for r > )\, so we are done.

11. First, let’s focus on the function & : "™ — R™ which takes x

z
to EIEE

& =&(x) = (v1]2]72, 22l2] 7, o a2 7?)

and
(|z)? — 22%)|=|~* —27 0|4 —2z1w3]w| 74
—2x0my |24 (|z)? — 223)|z|~* —2xomw3|a| ™4
D(#) = Do (&) = | —2wszafa|™ —2zswalo[™ (|2f? — 2a3)[a|
2z, 1y |24 —2z, 20| 2|4 —2z,w3]2| 4

Let’s denote D(Z) = ((x)) where

' ) o [ z —2z;mw|w| 7 if j#1
l. = (D =T | = !
ol (z) = ( (95))1] Dz (|$2> {(|33|2 —22H)|x|7* ifj=1

Clearly o = o, ie the matrix D(Z) is symmetric. Let r;(z) = (o}

denote the i*" row and column. Note that r;(z) = D(%z).

[a]?

Lemma 1. D(Z)-D(%) = |z|™*-1
Proof We need to prove that
lz|=* ifj =14

ri(z) () = {

For j =1
ri(z) ri(x) = Z(ai(z))Q

= ((jaf? —22])a| ™)+ D (

k=1,k#i

= (|x\4 4|x|2x2+4x |x|_8
k=

i(m),a?(w), 70‘?(35))

0 otherwise

—2x; x|z _4)2

Z daai|z) ™8

1,k#1

n
e (|x|4 ~ djaf?a? + 40 in)

k=1
=z

10

2z 2, 2|74
—2x0xy |24
—2237, |24

(Jzf* — 27|~

= (azl(x)v O‘%(x)v



n
= —2zjwila| " (|2? - 27|t = 2mjwfa| (|2 - 223) ||t + ) dmiaag|af 0
k=1,k#i,j

= 2xx 2|8 (2@2 + 23:]2- —2|z|? + Z 2xi>
k=1,k#i,j
= 2xx 2|8 ( —2|z|? + Z 2.%%)
k=1
= 0
So the lemma is proved.
Corollary (1)
lz|=% ifj =i
ri(x)-ri(z) = .
(@) i) {0 otherwise
Let’s continue the problem. By product rule

D(i(x)) = D(u(@)|x[*~") = Du(@) - D(@)|[*~" + u(@) D(J=[*~")

So
0

@) = Du(@) - ri(w) a7+ u(@)(2 = )]

T 51(&) = o (Du(@) 7@l + Duf@) (;fcw) (27" + (2~ n)Du(@) - ry(w)ile| "+

#(2 ) (@) )aulel 4 (2 = mul@ el + i~ Dul@)e?lel

We shall prove that

n

M) 3 e (Du@) @l =0

=1

(2) Z Du(Z) - (88%73(950 |z]>™" = —2(n — 2)|z| "2 " Du(%) - x

(3) 2(2 —n)Du(Z) - ri(x)z|z)| ™" = (n — 2)|z| > " Du(Z) - x

i=1

@ Y- ou@ Jadel " = (-2l Du(E) o

i=1

n

(5) > n(n—2u(@aflz| " = n(n - 2)u(d)z| "

i=1

Note that (2)+(3)+(4)=0 and (5)=n(n — 2)u(@)|z|™" = = > (2 — n)u(Z)|z|~™, therefore if (1)-

(5) are all true, we can conclude that Aa = 0. Let’s start to prove claims

Proof (1) We shall prove that > | %(Du(i)) -1i(z) = 0, then we can immediately conclude that

11



Dy aa: (Du()) - ri(z)|x|>~™ = 0. First, let’s calculate —(Du(:fc)) = %(uml(i),umz(:ﬁ),...,uwn (@)).
For j = 1,2737 vy M

ai(u( >> Dl () 140) = (s ()0 D, () 70) = D0k
So
P n n ‘ ‘
Du(@)) - ri() = 33ty ()t (2)
Oz j=1k=1 *
Therefore

PP ALHCIRICEES 9 9) N BIE

=1 i=1 j=1k=1
= Y e (@)Y aj(a)al()
J,k=1 i=1
n
- Zu%wk(j)rj(x)ri(@ (11.1)
J,k=1
n
= Dty (&)
Jj=1
= |z|*Au(z)
=0

since u is harmonic. At (11.1), we used corollary 1

Proof (2) Let’s start by calculating %rl(x) For j #1

0 o () = 0
3$i J a 8$l

(—2wzyla| ™) = —2u;la| ™" + 8ajaf|a|°

and for j =1

0

i _ 2 _ 9 21 1=4y _ g (o4 31| —6
5t = (ol = 202fa] ) = ~6ala] 1+ Sallo
So

iDu(a?) i7“(:17) = iiu (i)ioﬂ(x)
; ox; " L Lt I Gy
=1 =1 j=1

n _ n a ;

Jj=1 =1

6|z 4+8x3|x\ 64 Z —2z;|z|~* + 8z 27 ||~ 6)

j=1 ( i=1 Z;éj

= @2 el el 0 Y s?)
= Y, () (2 Ay fal~ o+ Syl

= —2(n—2)z|™* ZUzJ (@) -

= —2(n—2)|z|*Du() =

12



Finally
S Du(@) (aiw) 52" = —2(n — Dl Du(@) - 2la*" = ~2(n — D} "2Du(@) - o
i—1 i

so we proved (2).

Proof (3) We do straight calculation

n n

Z Du(z) - ri(z)z;, = Z Zuffi (ic)a;(;v)xz
i=1 ‘

— Z (umj (%) (xj:c|_2 — 223w~ + Z —2xix§|x|_4)>

i=1,i#j

_ Z": <uwj (%) (xjx|_2 — 2z, §$?|x|_4>)

Finally
> - mDu(@) - ri(ailel " = (2= n)lal " (~Ja| 2 Du(d) -z

(n—2)|z| 2" Du(z) - x

Proof (4) Since 52-uz = Du(&) = Du(#)r;(z), we can immediately see (4)=(3), so we are done.

Proof (5) This is also trivial, as follows

n

Z n(n —2)u(@)z?|z| "2 = n(n—2)u(@)|z] "2 Z 2
i=1

i=1

12. Let’s use the notation u(z,t; \) := uy(z,t) = u(Ax, A%t).
(a) We do straight calculation

9 o 9 20 _ 42 2
au(m,t, A) = 8tu()\x,)\ t) = Mup( Az, A%t)
9 9 2, _ 2
axiu(:z:,t,)\) = xiu(/\:m)\ t = Mg, (Az, \°t)

2

%u(z,t;)\) = %)\u%()\x,)\zt) = AUy, o, u(Ax, \7t)

%

13



Therefore
ug(z, 15 0) — Agu(z, t; ) = Nug(Az, A%t) — N2Azu(Az, \2t) = 0
so uy(x,t) = u(z,t; \) solves heat equation.
(b) 5 5
ﬁu(x, t;\) = au()\x, Nt) = - Dyu(Aa, N2t) + 2Mtu, ( Az, A%t)
Since u(z,t) is smooth, so is u(x,t; A). Therefore the derivatives commutes. More precisely,

(% — Ax)(%u(ﬁﬂ,t; /\)) = % ((gt = Ag)u(w, t; >\)> =0

by (a). So the function %u(x,t; A) solves the heat equation for fixed A\. Take A = 1, then
0 0
au(x,t; A) = ﬁu(m, t;1) = x - Dyu(z,t) + 2tug(x, t)

solves the heat equation.

13. (a) Let z = z(z,t) = %. Then

Vit
wlat) = () = =5 0/ (e(a1)
Us(o.0) = ool 72) = v/ (:(o.)
up(z, t) ai %v/(%) - %v"(z(z,t))
Therefore
<~
1 ! 1
—5 v (2, 8) = S0 (2, 1)
A
—52(x, )" (2(2, 1) = 0" (2(2,1))
<~
") V() +5v() =0
By (*), v’ satisfies ’1’)—,,/ =—%,50

where ¢ = € is a constant. Thus

v(z) = /v'(s)ds +d= 0/6_32/4(13 +d

14



14. Define function v(z,t) = u(z,t)e*. Then
v — Av = uge + uce — e Au = e“(up — Au+ cu) = e f (14.1)

and clearly v = g on R x {t = 0}. Using THEOREM 2 in section 2.3.1, the function

vt = [ o —0uwiy+ [ [ 0wyt a5 dyds

—ct

solves the equation (14.1). Thus the function u(x,t) = v(x,t)e " solves the system of equation.

16. Define u(z,t) = u(z,t) — et for each € > 0. We will prove first that u. attains it’s maximum
on I'y. For sake of contradiction, assume that u. has maximum at (2°,¢°) € Ur = U x (0,T]. Define
v:U — R with v(z) = uc(x,t°). Then v has maximum at 2° € U. Since u € C3(Ur) N C(Ur), we have
v € C3(U)NC(U). Thus we must have Hess(v)(z°) is a negative definite matrix. So we must have

Av(x®) = tr(Hess(v)(2°)) < 0 (16.1)
We’ll consider two cases.

Case 1: t° < T
Since (2°,t%) € U x (0,T) is global maximum, we have %ué(aﬂo,to) =0. So

0
0= gue(a@o,to) = uy(2°,t) — ¢

Therefore we have
(2, %) =€ (16.2)

But

Av(z?) = Apuc(x®,t°)
Au(z,t°)
= w (2% by (16.2)

using (16.1), we get a contradiction.
Case 2: t' =T

Since u(2°,1°) is global maximum, there exist 0 < 7" < T such that %ue (2°,¢t) > 0forallt € (T",T).
Since u solve heat equation

0 < gue(x%)

ot
= uy(2%,t) —¢
= Au(z®t) —e

S0
Au(z®,t) > € (16.3)

for all t € (T",T). Also we know that Av(z%) = A,u (2%, T) = Au(x°,T). Since u € C3(Ur) N C(Ur),

A, u is continuous. Using (16.3), we conclude that Av(z%) > € > 0, which is a contradiction with (16.1).

Corollary: For all e >0

max e = MAax Ue
Ur I'r

15



By using the corollary, let’s prove that u also attains its maximum on I'y. Since u = u. + €t

maru < max (ue + et)
Ur Ur

IA

mazx u. + max et (use corollary)

IA
3
Q
8

&
+
m
N

INA
3
8
8
e
+
[0}
N

Let € — 0, then maz u < maz u. Since 't C Ur, we conclude max u = maz u
UT FT UT FT

17. NOTE : The reader should read the proof of THEOREM 3(A mean-value property for the
heat equation) at 2.3.2 before start reading the solution.

(a)We modify the proof of the THEOREM 3. Put v instead of u in the proof. We know that

¢'(r)

A+ B

1 2n
T //E(T) —4nvgy — - Z;inyidyds

Since v defined to be

_.n lyI” _ n
Y= —§log(—47rs) + i + nlog r = log(®(y, —s)r™)

1 > 0in E(r) because ®(y, —s)r™ > 1 in E(r). Thus 4ny(vs — Av) < 0, —4nypvs > —4nAv. Then we
have inequality

¢(r) = ey //E( )—4nv51/)— —Zvylyldyds

> e //E( : —AnAvyp — — Zv% yidyds
= 0
according to the proof of the Theorem 3. So we have
¢(r) = ¢(e)

for all r > € > 0. But we know

lim ¢(e) = 4v(0, 0)

e—0

/ / oy, s dyds—¢(r>z4v<o,0>
E(r)

At first, the book choses x = t = 0 without losing generality, so we

— // Y, 8)—— ledyds > v(z,t)
47" E(x,t; 7‘) - )

So we have inequality

16



(b) We modify the proof of the THEOREM 4 at 2.3.2 (Strong Maximum Principle for the Heat
Equation). In the proof, put v instead of u. Assume that there exist a point (xg,t9) € Ur with

v(zo,to) = M := max u. Then for sufficiently small r > 0, E(xg,to;7) C Ur, thus
Ur

M 1'07150

4rn E(loﬂfoﬂ) ' ( s)?

2
// Iz yl dyds
471” (zo, tgr) )

so we must have v(y,s) = M for (y,s) € E(xo,to;r). The rest of the proof is the same.

IN

(c) Follow the equations
vy = ¢ (u)uy
U, = ¢ (W),
Vow, = ¢ (W, + ¢ (W)tg,a,
Thus we have

-
S
IN
o

— Av = ¢ (wuy — ¢ (w)Au — ¢ (u)

i=1

(d) v=|Dul’ +uf =ui +3°7_, u3 , so we

v = Uty + 2 Z Uz Ut (17.1)
j=1

n
v{l?i = 2ututwi + 2 E U/:Ej ua:jzi
=1

2 2
Vg = 2 UtUgz,; x; + Uy + Uy Ug iz, x; + Uy . .
i J T T

so we have

n
Av = vam
i=1
n n
= 22 (utum.x. —|—ut2,. —|—Z:ugcu3,;mJc +u? )
il X J Jglidd TjT;

i=1 j=1

<Zum + Z u, AU Zux]Aux ) (17.2)

7,7=1

since u solves heat equation, so does u; and wu,, for ¢ = 1,2,...,n. This is true since differentiation
commutes. Thus (17.2) becomes

Av = (Zutx + Z Ux T +’U¢A’U,t +ZU$JAU@J>

3,j=1
> + 2ugug + 2 Z Uy, Ugs

SO o

7,j=1 J=1
> 2Ututt+22 Uz, Ug ;¢

j=1
= (by 17.1)

17



thus we have Av > v, so v is a subsolution.

18. Since w is smooth, differentiation commutes, so

Vit — AU = Uttt — Aut
0
= a(’utt — AU)
=0
Moreover, v = uy = h on " x {t = 0} and
1o} 0
v(z,0) = aut(x,()) = ah(z) =0

so vy =0 on R" x {t =0}.

19. (a) We have 0 = uyy = %uy, S0 u, is constant as x changes, thus u, only depends on y. Say
uy(x,y) = c(y). By Fundamental Theorem of Calculus, we have

u(z,y) — u(z,0) :/0 uy(ac,z)dz:/o c(z)dz (19.1)
Let F(z) :=u(z,0) and G(y) := [} c(2)dz. By 19.1, we have u(xz,y) = F(z) + G(y).

(b) ¢ and n are defined to be £ = £(x,t) = 2 +t and n = n(x,t) = 2 — t. We have an equality

Thus we have

11 1 1.1 1 1
Ugy = ugn(x,t) = i(gum - iumt) + §(§Utx - §Utt) = Z(UM — Ugt)

Now it is clear to see
uttfum:() < U&‘n:O

18



SOLUTIONS OF CHAPTER 3

1.  Trivially us(z,t,a,0) = —H(a) and Du(x,t,a,b) = a so uz + H(Du) = —H(a) + H(a) = 0.
Denote y = (z,t) € R"* ¢ = (a,b) € R*"™ and u(y,c) = u(z,t,a,b). Only thing left to prove is
rank(D.u, D} u) =n+1

T 1 0 0 e 0 0
T2 0 1 0 . 0 0
Deu, Djou= | : : ! : - : :
Ty, 0 0 0 e 1 0
1 —Hg,(a) —Hg(a) —Hgi(a) -+ —Hg (a) O

The matrix Dou, D}, u (i.e. the left (n+1) x (n+ 1) part of the matrix D.u, D7 u) has determinant
(=1)™, so it has rank n + 1, so we are done.

2. (i) for u(x;a) = o1 + a’x9 — 2a
Dou(z;a) = 2axs — 2 so for ¢(z) = P(ay,x2) = é, the function solves the equation D,u(z; ¢(z)) = 0.
The envelope is
1 1

v(z) = u(z;9(@)) = (w1, 223 ) = 21 = =

(ii) for u(z;a) = 2a121 + 2a2x9 — x3 + a + a3
Dou(z;a) = (221 + 2a1, 222 + 2a2) so the function ¢(z) = ¢(x1, 22, r3) = (—x1, —x2) solves the equation
Dou(z; ¢(z)) = 0. The envelope is

o) = u(; $(a) = —a3 — a3 + x5

3. (a) Let’s write the equation
G(z,u,a) = G(z,u(zr,a),a) =0
Gy, (z,u,a) + G (z,u,a)uy, =0

for the function G(z,2,a) = 37,

aj;v? + 23 The equation is
2a;x; + 3u2uxi =0

Therefore

2 2
5’& Uy, Ty = —Q;T;

if we add up for all ’s, we find that

3 "3 =
SwlDu -z = Swlug, ;= —a;z? = u®
2 2 i 3

i=1

i=1

Therefore u(x, a) solves the PDE
F(Du,u,z) = gDu'm—uzo
(b) to be continued...

4. (a) Let’s write y = (x,t) and consider characteristic equations for y(s) = (z(s),t(s)), q(s) =
(Duz(y(s)), us(y(s))) and z(s) = u(y(s)) Then the PDE becomes

F(g,z,y)=q- (b,1) — f(y) =0
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Therefore
D,F(q,z,y) = (b1)

DyF(q,2,y) = Dyf(y)
DzF(QVzay) =0

Then the characteristic equations are

y(s) = (b,1)
2'(s) = z(s) = (b,1) - q(s) = b- Du(y(s)) + ue(y(s)) = f(y(s))
q(s) = =Dy f(y(s))

(b) Let’s choose y(s) = (bs + ¢, s) for some constant ¢ € ™. We need to find proper s and s to have
equality y(s) = (z,t). Clearly t = s and ¢ = x — bt. Therefore

y(s) = (x+b(s —t),s)

By Fundamental theorem of calculus,

2(t) — 2(0) = /Oz/(s)ds

But 2(0) = u(y(0)) = u(x — bt,0) = g(x — bt), so

u(z,t) = z(t) = g(x — bt) + /0 flx+b(s—t),s)ds

which agrees with the formula in 2.1.2

5. (a) Let’s read the equation as
F(Du,u,z) =2 -Du—2u=0

so the function F(p, z,x) satisfies
F(p,z,x)=p-x—22=0
D,F(p,z,z) =x
D,F(p,z,x)=p
D.F(p,z,x) = —2

Therefore the characteristic equations are

p(s) = —p(s) — (=2)p(s) = p(s)
Let’s choose

z(s) = (21(s), 22(s)) = (Cre”, %)

for some constant C. Moreover, z(s) must be

2(s) = Coe®

20



but

2(s) = g(Cr)e*

For given (a,b), if we choose s = log(b) and C; = ¢, we find that
x(s) = z(log(b)) = (C1b,b) = (a,b)
Thus
u(a,b) = u(z(log(b))) = =(log(b)) = g(C1)e?**®) = g(-)b?
Finally, let’s prove that the function u(zq,z2) = g(%)x% indeed solves the equation system

z-Du—2u=0

u(z1,1) = g(71)

The second equation is trivial, for the first equation

T

1 x x
TQUgy + Toly, — 2u = xlg’(—z )—I x% + xg(g(—xl V2o + g’(—l
2" X 2

—I 2 X1 2
:1:2) x% z3) 9(@)332

(b) We can read the equation as F(Du,u,x) = 0 where
F(p,z,z) =p- (r1,222,1) =32 =10

the derivatives are
DPF(p7 2, x) = (xly 2'732’ 1)
DwF(p,Z,.’I}) = (p152p2a0)
D,F(p,z,x) = -3

so the characteristic equations are
z(s) = (x1,2x2,1)

p(s) = —(p1,2p2,0) — (=3)p = (2p1, P2, 3p3)
Considering equations, we can choose x(s) = (Cie®, Coe?®, s) and z(s) = C3e3*. Putting s = 0
C3 = 2(0) = u(2(0)) = u(C1, C2,0) = g(C1,Cs)

Let (21, x2,x3) be given. Only thing left is to choose proper C1, Cs and s such that xz(s) = (z1,z2,x3).

Clearly s = x3, C; = 1% and Cy = z9e~2%3. Finally
w(zy, w2, w3) = u(x(xs)) = g(Cr, Ca)e*™ = g(x1e™ ™, mpe2"3)e™
Let’s prove u indeed solves the PDE.
TiUy, = xlgml($167$3,$2672z3)62w3
2x9Uy, = 2T2Gy, (3016_5”3,3626_2””?’)6“’3
Ugy = _gmlfleizlegz?’ - gm22x2672aj3)63$3 + 3963303 = _1'1995162302 — 2z + 3963303

Therefore F(Du, u,z) = T1Uz, + 2ToUz, + Uy, — 3u =0
(c) We can read the equation as F(Du,u,x) = 0 where

F(p,z,x):p-(z,l)—l
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the derivatives are
D,F(p,z,z) = (z,1)

l)xfxpvz,f)zzo
l)zPKp,z,x)::ZH

thus the characteristic equations are

Choose z(s) = s+c; and 22(s) = s. Since 2/ (s) = z(s) = s+c1, choose z1(s) = 2 (z+c1)? + c2. Assume
that for some s, x1(s) = s = z5(s), then

1

s+ =z(s) = u(x(s)) = u(s,s) = 28
so s must be —2¢;. Let’s put s = —2¢; in the equation z1(s) = s to find cs.
L5
—2c1 = 2(—2¢1) = —¢] + 2
. Thus ¢co = —2¢; — %cf Let’s write ¢ = ¢; to simplify the notation. In summation, we find that

1 1 1
z(s) = (5(5 +¢)? - 502 —2¢,8) = (532 + sc—2¢,s)

and

u(%s2 + sc—2¢,8) = u(x(s)) = z(s) = s+ ¢

We need to find proper s and ¢ for given (z1,x2) such that z(s) = (z1, z2).

1
(z1,22) = 2(s) = (582 + s¢—2¢,8)

2 1

so xo =sand ¢(s —2) =21 — %s =z — 23:%. Finally, for x5 # 2,

2
_2x — 15

- 2(z —2)

and ) )
_ _ _ 2ry — w5 x5 — 4z + 211
u(zy, w2) = u(x(x2))z(v2) = 22 + ¢ =22 + 2ws—2)  2ws—2)

2
Let’s show that v = % is indeed a solution. For xy = x3 # 2, clearly u(xy,z1) = 4. Also

1
xg—-2

Uz, (21, 22) =

(229 — 4)2(29 — 2) — 2(23 — 429 + 271)
(2(z2 — 2))°

Ug, (T1,22) = =1 — uuy,

Thus wug, + Uz, = 1, so we are done.

6. (a) Let x = (x',x2,...,x") and b = (b',b? ..., b")

ox' sgn(n -
J(s,z,t) = detDyx(s, x,t) = det(%j) = Z (—1)%9m(™) Hxia(j)
ceSy j=1
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therefore J is a linear combination of functions f, (s, z,t) = (—1)%9(¢) | xig(j)(s7 x,t) where o € S,.
We need to prove that

Ofo
JS = —_— = le Z fa
oES, Os o€Sn
Let’s start to compute RHS
Ofo f(o)a @8N~ 0 T W
e = )som Hx o= (=1)%9" Zl %X;a(i) 1_‘[;‘é X ()
i= j=1, j#i

Since x is smooth, we know that differentiation commutes, so

o 0

% _ %

%Xza(i) N 310(1') x

By the given condition g—’s‘ = % = b(x) we know that x? = b’(x) for i = 1,2, ...,n. Thus

o 0 ;
oyt =7 i b
95”7 = Dy awm Z X0

Therefore we find that

Ofs s n(o - j
@J; - o )Z<<wak fram) H Xia(j)>

J=1,4#
Thus
Ofo
JS - UGST,,E
= ES: ( sgn(tﬂZ((szk Ia(1)> H IU(J)>>
o€
S5 SN OIS | g
i=1 k=1 oceSy, Jj=1,5#t
but
Z (—1)%9m@)x xg() H x/ () = detDy (x', x.. xh xR xL L x™)
€Sy j=1,j5#i

which is equal to J for ¢ = k and 0 for i # k. Therefore
n .
Jo=Y bl J =div(b(x))J
i=1

(b) Note that the problem is written wrong, erratal We’ll use characteristic equations.
uy + div(ub) = uy + Du - b + udiv(b)

We can read the equation as
F(Du,us,u,2,t) =0

where for ¢,y € R"*! and z € R

The derivatives are
D,F(q,2,y) = (b, 1)
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D.F(q, 2,y) = div(b)
DyF(q,2,y) =0
Thus the characteristic equations are
y(s) = (b, 1)
zs(s) = 2(s) = (b, 1) - ¢ = —z(s)div(b)

Since we are given the fact that X = b(x), we can choose y(s) = (x(s), s)
claim: z(s)J(s) is a constant function.
proof: We use Euler Formula, which we proved in (a)

%(ZJ) = z,J + 2Js = —zdiv(b)J + 2div(b)J =0

For given (z,t) € R x [0, 00), choose x(s) = x(s,xz,t). Since zJ is constant

but
z(t) = u(x(t),t) = u(x(t, x,t),t) = u(z,t)

J(t,x,t) = detDyx(t, x,t) = detD,(z) =1

u(z,t) = z()J(t)

2(0)J(0)
(
(

= u(x(0,z,t),0)J(0,x,t)
= g X(O,I]’J,t))J(O,I’,t)

since u = g on R™ x {t = 0}

7. NOTE: Before start reading the solution, the reader should read appendix C.1, and section
3.2.3, especially Lemma 1.

Define functions ® and ¥ as in appendix C.1. Define v(y) = w(¥(y)) : V — R as in 3.1.3.a. Then by
(26), we have an equality

F(Dv(y)D2(¥(y)),v(y), ¥(y)) = F(Du(¥(y)),u(¥(y)), ¥(y)) =0  (7.1)
Define function G : R2"*+1 — R such that
Glg,2,y) = F(gD®(Y(y)), 2, ¥(y)  (7.2)

By 7.1, we have
G(Dv(y),v(y),y) =0

Moreover V := ®(U) is flat near 2° € T. Thus by LEMMA 1, we have noncharacteristic boundary
condition

an (qoﬂ ZO? yo) 7{ O
where y° = ®(2°) and ¢° = p" D¥(y°). By the definition of ®

1 0 0o - 0 0

0 1 0 e 0 0

De(z) = | : : . : :
0 0 0 s 1 0

Vo1 Var “Ves 0 Va1
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Let c;(x) define the i column of the matrix. Then we have

0 T Yz, (T1,22, ..., xn—1) for j=1,2,...,n
—(q-¢i(z)") = :
5 (@ (o)) {1 .

By equality in 7.2

Goula2) = 5 FDO(), 2 V()
D LN T R T P R T B

In particular, when z is near 2°, the equation x,, — y(z1, 22, ..., 7,—1) = 0 defines the boundary for U.
Thus v(2°) = (=Yz,, —Vasy -, —Va,,_,» 1) is the normal vector at the point 2°. Using 7.3

Go (0 2°,0°) = 3 Py (DB, 2, 0) 5 (6 DR(V())

But by definitions of 3° and ¢°
U(y") = U(@(a))z”
¢"De(¥(y")) = p°D¥(2°) D& (2”) = p"

Thus
Gy, (4, 2°,0°) = Fp(p°, 2%, 2°) - v(2?)

Therefore the noncharacteristic condition becomes
Fp(po7 zo,xo) . V(:L'O) #0

when T is not flat near z°.

8. (Note that there is an Errata in the statement of problem). We shall prove that the function u
which satisfies the condition

u=u(r,t) = g(x —tF'(u)) = g(z — tF'(u(x,t)))
provides implicit solution of the conservation law
ug + divF(u) = uy + Du-F' =0
Let’s calculate ug(x,t)

ug(x,t) = gt(a:—tF/( )
- ZgT O () 2 1Y ()
- ng O (1)) () () — 1) ()

= —Dg(x —tF'(u)) - F'(u) — tuy Dg(z — tF'(u)) - F" (u)

Therefore
ug(x,t) (1 +tDg(z — tF'(u)) - F”(u)) = —Dg(x — tF'(u)) - F'(u)
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Let’s define y(z,t) = 1 +tDg(z — tF'(u)) - F”(u) to make equation looks simpler. Basically,
wa(e,B)y( 1) = — Dyl — F' () - F'(u) (5.1)

Let’s calculate divF(u) = Du - F'(u). Fori =1,2,...,n

U (@,1) = g(z — P ()

j=1
= g, (x — tF'(u))(1 - t(F")"( )+ D Gay (= F (u) (—H(F)) (w)u,)
Jj=1,j#i
= Go (@ — tF'(u) = tug, Y go, (2w — tF'(u)) (F7)" (u)

Jj=1

= go, (v — tF'(u)) — tug, Du(z — tF'(u))F" (u)

Therefore
'7(1"7 t)uwz' (x7 t) = Gz, (Z‘ - tF,(“’))
Thus
y(x,t)divF(u) = v(x,t)Du-F'(u)
= Zv(ﬂﬂvt)uzi(%t)(Fi)'(U)

= ngl — tF'(w))(F")' (u)

_ b g(z — tF'(u))F'(u)
Using (8.1), we conclude that y(z, t) (ut + diVF(u)) = 0. If we are given that

A(,) = 1+ tDg(x — tF' (u)) - F"(u) £ 0

we can say that u; + divF(u) = 0, i.e. the function u solves the conservation law.

9. NOTE: Before start reading the solution, the reader should know the proof of the THEOREM
1 (Euler-Lagrange Equations) in section 3.3.1.

(a) Let’s define S := {y € C>°([0,#]; R")|y(0) = y(t) = 0} and i : R — R such that

i(r) = Ix() +7y()] :/0 L(x(s) + 7y (s),%(s) + 7y(s))ds

Clearly for any y € S and 7 € R, x+ 7y € A. Therefore i(7) has minimum at 7 = 0 for any fixed y € P,
so we know i'(7) = 0. As we see in the proof of the THEOREM 1

/ ZLUI (X + 7y, X+ 1Y)y + Ly, (X + 7Y, x + 7Y)Y’

Thus at 7 =0
/ ZLUZ X,X)y" + Ly, (%, X)y'ds (9.1)
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By integration by parts

0 = Ly, (k(t),x(t)y" (t) = Lu, (%(0), x(0))y"(0)

Therefore

If we put this equality in (9.1), we find that

o=§lﬂ—;%&mnm+%@@wwk%

Since this equality is true for any smooth function y € S, we conclude that

(%05 () L, (%(5). x(5)) = 0

for all i = 1,2,..,n. In other words, x(s) satisfies Euler-Lagrange Equations.

(b) Now consider the set P := {y € C>([0,];R")|y(t) = 0}. Clearly for any y € P and 7 € R,
X+ 7y € A, s0 i(7) has minimum at 7 = 0 for any fixed y € P. Thus i'(0) = 0. By integration by parts

L K050y 0) = [ (L 6).x(5) )y 6) + L (x06) (9 (9]

Therefore

[ (61 x93 s = = [ (51 (6050 x(9) )y (5 = L, (5000 x(0)y'0)

If we put this equality in (9.1), we find that

0 = (0

n

)
= 3 [ | 9 x(6) + Ly (505 () |y - D, L0)x(0)-¥(0)

i=1

But —%Lvi (%(s),x(s)) + Ly, (%x(s),x(s)) = 0 by (a), so D, L(%x(0),x(0)) - y(0) = 0 for any y € P, thus
D, L(x(0),x(0)) =0

(¢) Foranyy € Sand 7 € R, x+ 7y € A and g(x(0)) = g(x(0) + 7y(0)). Define j : ® — R such
that

() = i(r) + g(x(0) + 7y(0)) = /0 L(x(s) + 7y(s),x(s) + Ty (s))ds + g(x(0) + 7y(0))

By similar reasoning as in (a),
n t o .
070 =3 [ [~ 5261 x5 + L (x(5) x50 s
i=1

notice that we got rid of g(x(0) + 7y(0)) since it is constant as 7 changes. Therefore x satisfies Euler-
Lagrange equations.
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Now consider y € P and define j(7) in the same way. Then

(7) = 7(7) + mg(x(0) + 7y(0) = #() + Dg(x(0) + 75(0)) - ¥(0)

So at 7 =0, 5/(0) = #(0) + Dg(x(0)) - y(0). But from (b), we know

7'(0)

N N . . .
S0 [ L x(6) + L () x(0) s~ DLLG0), x(0) - ¥(0)
i=1
since x satisfies Euler-Lagrange Equations. Therefore

0 = ;50
= —DyL(x(0),%(0)) - y(0) + Dg(x(0)) - y(0)

(Dg<x<o>> ~ DLL(x(0), x<o>>) ¥(0)

Since the equality is true for any y € P, we must have D, L(%x(0),x(0)) = Dg(x(0)) as an initial condition
for minimizer x.

10. (a) Firstly, let’s remember Young's Inequality: Let p,q € (1,00) and a,b € [0,00), then the

inequality
a? bP
—+—=2>ab
p p

holds. By the definition,

L(v) =sup {v-p—H(p)} =sup {v-p—
pER™ pER™

Ip|"
T}

By Young's Inequality and Cauchy's Inequality, we know that @ + % > |pllv] = p- v, so

"y _ [0l

L(v)=sup {v-p——} < — (10.1)
pERN T S
. If we put p = v|v| 7
lp|” o |vfv =
vep—— = wv-vfu|
T r
e ol
= - — 10.2
o5 - 1 (10.2)
bt
r
_ PP
s

At (10.2), we used #E° =S¥ =5 Thus L(v) > [ Combining (10.1), we conclude that L(v) = 2.

S

(b) We need to determine

L(v):=H"(v) = Sélégn{v p—H(p)}
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(For the sake of the easiness of the notation, we assume that v and p are column vectors) Fix v and
define function f = f, : " — R such that

n

fp)=v-p—H(p) = (vi—bi)pi - % > aipip;

i=1 ij=1

Notice two things: f € C°°(R"™; R), and Z?jzl a;;pip; = pT Ap. Assume that we also know f is bounded.

Then f must have maximum, i.e there exist p* such that f(p*) = sup f(p) = L(v). Since f is smooth,
pER™

p* must be a critical point, so we have Df(p*) = 0. Let ¢; denote i*" column of the matrix A (and also
i*" row since A is a symmetric matrix). Then by simple calculation

0
Op;

f*) = (vi—bi) —ri - p"
Thus
Df(p*)=v—b— Ap* (10.3)

Since A is a positive definite matrix, it is also invertible. So we can solve the equation (10.3) for
p* = A7Y(v — b). Moreover, for this particular choice of p*, Hess(f)(p*) = —A, which is negative
definite, so p is actually local maximum. Since it is only critical point and we assumed f to be bounded,
p* must be the global maximum. Therefore

L(v) = f(p")
= (v=b)p" - %(p*)TAp*
= 0B (AT ) - AT B AT ) (104)
= (v=b)T(A"(v-1b) - %((v —b)TATHA(AT (v~ b))
= %(v —b0)TA (v D)
At (10.4), we used that
(A7 v =b)) = (v=b)T (AT
and
(Afl)T _ AflA(Afl)T
_ A—lAT(A—l)T
= AtAataT
= AT
— 4!

(briefly we proved that if A is symmetric, so is A=!) We only need to prove that f is bounded. Since
the function x — 27 Az is continuous and the set B(0,1) C R" is compact, 27 Az is bounded on the set
B(0,1). Assume 27 Az > M for |z| = 1. Since A is positive definite, we can choose M > 0. Let p; = ‘%‘

fo) = (w—b)-p—p"Ap
< lo—bllpl — T Ap  (by Cauchy’s Inequality)
< |v—bl[p| = Mp®
1
= Mipl(lo — b~ Mip)
1 Jv—0b] . : . :
< VAR (by Aritmetic-Geometric Mean Inequality)

Thus f is bounded, so we are done.
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11. Assume that v € 9H(p). Let’s prove p-v = H(p) + L(v). For any r € R"
rrv—H(r)<r-v—(H(p)+v-(r—p))=v-p—H(p)
Thus
L(v) = sup {v-r—H(r)} <v-p—H(p)
regn

but for r=p,v-r—H(r)=v-p— H(p),so L(v) =v-p— H(p).

Now assume that p-v = H(p) + L(v), we’ll prove v € 9H (p). For any r € R"

v-p—H(p) = L(v)
= sup {v-s— H(s)}
seRn
> wv-r—H(r)

So

H(r) = H(p) + v(r —p)
thus v € 9H (p). Since we have duality between L and H

vEDH(p) <= p-v=H(p)+ L(v) < pe€dH(v)

12. First observe that

max {~Hi(p) — Ha(~p)} = — min {H (p) + Ha(~p)}

so we need to prove

min {La(v) + Lo(v)} + min {H1(p) + Ha(~p)} = 0

By definition of H; = L} and Hs = L3, for all p € &"

M)+ Ho(=p) = sup {or-p=La(o)}+ sup {=vo-p=La(va)}
> vseuggl{—h(v) — La(v)}
= —Jgg%I}L{Ll(U) + La(v)}

Therefore we have
min {H;(p) + Ha(—p)} > — min {L1(v) + La(v)}
pER™ vER™

so we proved
min {L; (v) + La(v)} + min {H;(p) + Ha(—p)} >0
vER™ pERN

Next we prove that it is also < 0. First let’s remember some facts about Hamiltonian and Lagrangian.

Lemma (THEOREM 3 at 3.3.2) The three statements

pv=L()+ H(p)



are equivalent, provided that H = L*, L is differentiable at v and H is differentiable at p.

Assume that Ly (v) + L2(v) obtains its min at v*. In other words

min {La(0) + La(0)} = Li(0) + La(v")

Then we must have 0 = D(Lq + Lo)(v*) = DLy (v*) + DLy(v*) = 0. Choose
p* = DLl(U*) = —DLQ(U*)

then by the Lemma,
Ly(v") + Hy(p*) = v" - p*

Ly(v*) + Ha(—p*) = —v* - p*

SO

min{L(0) + L)} + min (1 (p) + Ha(=p)} < La(") + Lo(v”) + i (57) + Ha(~")

thus we are done.

13.  Define function f(y) = tL(*7%) + g(y) and assume f takes its minimum at y°. Then we

must have D f(y°) = 0. But we know D f(y) = tDL(*%)=t + Dg(y) = Dg(y) — DL(*%), so we have

DL(‘T%’O) = Dg(y"). Then by the Lemma from the problem 12

ﬂffyo

t

DH(Dg(y°)) =

but we are given

0
r—y
R > [DH(Dg(y)] = =V
which means y" € B(z, Rt). Thus we must have

;geri{tL(x%y) +9(y)} = yeggr’lm){tL(%) +9(y)}

so we are done.

14. We have Hamiltonian H(p) = |p|?. Let’s determine L := H*.
Claim L(v) = % for all v € R”

Proof By Arithmetic Mean-Geometric mean and Cauchy inequalities, we have

lol®
1

2
v
v-p— H)=v-p— [ < follpl - pf? < (X o) — o2 =
o)

for all p € R™. Thus we have L(v) < %. But for p* = §, p* - v — Ip*|? = %, so we have L(v) = “-.
Let’s apply Hopf-Lax formula for u.

ua.t) = min {tL(~ ) +9(w))
e
= yrrelgnr}l{itJrg(y)}



Since g(y) = u(y,0) is given in the problem as

oo ifyé¢FE
—
u(, 1) min{—— +9)}
—
= mi
= —dist(z, E)?

15. We shall fill the gaps in the Lemma 4 from 3.3.3. Let’s prove (36). Define function H'(p) =
H(p) — %|p[?, then for all £ € R"

"Hess(H')(p) = Y Hyup, (D)5 — 01¢[* > 0

Q=1
thus H' is a convex function. So we have
p1+p p1+p 0
H(=2) = H(552)+ 2l +pof
2 2 8
1 ! 1 ! 0 2 . /.
< §H (p1) + §H (p2) + §|p1 + po| (since H' is convex)
1 0 1 0 0
- ZH _ 2 _H _ 7 2 7 2
7 (p1) 4|pl| + 5 (p2) 4|11?2| + 8|191 + po|
1 1 0
= §H(p1) + §H(p2) - g(2|p1\2 +2|pa|? = |p1 + p2/?)
1 1 0
= -H ZH(ps) — = |p1 — pal?
5 (p1) + 5 (p2) 8\191 P2

so we proved (36). Let’s prove (37). Assume that
L(v1) = p1o1 — H(p1)

L(vs) = vapa — H(p2)

So
1 1 p1v1 +pava 1 1
—L —L === -H ——H 15.1
LL(w) + 2 D) = BT Ly Lagy) s
v] + v 1 9 V1 + U2 P1 + P2 p1 + D2 1 2
L oy — > —H oy —
(5t gl 2 — 2 (5 )+ gl — el
v +v2) - + 1 1 0 1
I R P S 4C0
1 1 (v1 —v2)(p1 —p2) | 0 2, 1 2
- L ZL(ws) — Zip1 — oy — by (15.1
5 (v1) + 5 (v2) 1 + 8|pl p2|” + 89|U1 Vo y (15.1)
1 1 V1 — V) - — — V] — U
> “L(vy) + = L(vs) — (v1 2) - (P1 — p2) + [p1 — palv1 2] (15.2)
2 2 4 4
1 1
> iL(Ul) + §L(vg) by Cauchy’s inequality

Note that at (15.2), we used Arithmetic-Geometric Mean Inequality.
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16. Assume that

.
w (@) = tL(—2) + ' (1)
.
W (2, 1) = tL(—2) + ¢°(52)
Thus
. xTr — xr —
u'(et) —w(@t) = min (L) M W) L) ) puty =
T — Tr —
< L) + g () — () — ()
= g'(y2) — 9*(v2)
Similarly

w?(z,t) —u'(z,t) < g°(y1) — 9" (1)

So either [u?(z,t) — ut(z,t)| < |g%(y1) — gt (y1)] or |ul(x,t) — u?(x,t)] < |9t (y2) — g%(y2)|. In each case,

ul (z,t) — u?(z,t)| < Sg};plgl - ¢
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