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SOLUTIONS OF CHAPTER 2

1. Consider the function z : < → < for fixed x ∈ <n and t ∈ (0,∞)

z(s) = u(x+ bs, t+ s)ecs

Then

ż(s) :=
∂z

∂s
= ecs(b ·Dxu(x+ sb, t+ s) + ut(x+ sb, t+ s) + cu(x+ sb, t+ s)) = 0

by the condition given by the problem. Therefore, z is a constant function with respect to s. Finally, by
using the fact that u = g on <n × {t = 0}, we conclude that

u(x, t) = z(0) = z(−t) = u(x− tb, 0)e−ct = g(x− tb)e−ct

2. Let O = (aij) and φ(x) = O · x. Then it’s clear that Dφ(x) = O. Since v is defined to be
v(x) = u(O · x) = (u ◦ φ)(x), we calculate

Dv(x) = Du(φ(x)) ·Dφ(x) = Du(O · x) ·O

Then vxi(x) =
∑n
j=1 uxj (φ(x))aji. Note that by the same calculations, we have

D(uxj ◦ φ)(x) = Duxj (φ(x)) ·O

Therefore

vxixi(x) =
∂

∂xi
vxi(x) =

n∑
j=1

∂

∂xi
uxj (φ(x))aji =

n∑
j=1

aji(

n∑
k=1

uxjxk(φ(x))aki) =

n∑
j,k=1

ajiakiuxjxk(φ(x))

The laplacian of v is

∆v(x) =

n∑
i=1

vxixi(x) =

n∑
i=1

(

n∑
j,k=1

ajiakiuxjxk(φ(x))) =

n∑
j,k=1

(uxjxk(φ(x))

n∑
i=1

ajiaki)

Since O is an orthogonal matrix,
n∑
i=1

ajiaki =

{
1 if j = k

0otherwise

Lastly, we conclude our proof with

∆v(x) =

n∑
j=1

(uxjxj (φ(x)) = ∆u(φ(x)) = 0
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since u is harmonic.

3. We’ll modify the mean value property for harmonic functions. It is assumed that the reader know
the proof of the mean value property(Check Evans PDE 2.2.2, Mean Value Formulas). As in the proof
in the book, define

φ(s) =
1

nα(n)sn−1

∫
∂B(0,s)

u(y)dS(y)

Then the book proves

φ′(s) =
1

nα(n)sn−1

∫
B(0,s)

∆u(y)dy

Since ∆u = −f in B(0, r)

φ′(s) =
−1

nα(n)sn−1

∫
B(0,s)

f(y)dy

By Fundamental Theorem of Calculus,

φ(r)− φ(ε) =

∫ r

ε

φ′(s)ds

for any ε > 0. Note that

lim
ε→0

φ(ε) = lim
ε→0

1

nα(n)εn−1

∫
∂B(0,ε)

u(y)dS(y)

=
1

m(∂B(0, ε))

∫
∂B(0,ε)

u(y)dS(y)

= u(0) (3.1)

Let’s calculate
∫ r
ε
φ′(s)ds∫ r

ε

φ′(s)ds =

∫ r

ε

−1

nα(n)sn−1

∫
B(0,s)

f(y)dyds

=
−1

nα(n)

∫
B(0,r)

f(y)

∫ r

max(|y|,ε)

1

sn−1
dsdy

In the last equality, we changed the order of integration. Note that∫ r

ζ

1

sn−1
ds =

−1

(n− 2)sn−2

∣∣∣∣∣
s=r

ζ

=
1

n− 2
(

1

ζn−2
− 1

rn−2
) (3.2)

Therefore∫ r

ε

φ′(s)ds =
1

nα(n)

∫
B(0,r)

f(y)

∫ r

max(|y|,ε)

1

sn−1
dsdy

=
−1

nα(n)
(

∫
B(0,r)−B(0,ε)

f(y)

∫ r

|y|

1

sn−1
dsdy +

∫
B(0,ε)

f(y)

∫ r

ε

1

sn−1
dsdy)

=
−1

nα(n)
(

∫
B(0,r)−B(0,ε)

f(y)
1

n− 2
(

1

|y|n−2
− 1

rn−2
)dy +

∫
B(0,ε)

f(y)
1

n− 2
(

1

εn−2
− 1

rn−2
)dy) by (3.2)

=
−1

n(n− 2)α(n)
(

∫
B(0,r)

f(y)(
1

|y|n−2
− 1

rn−2
)dy +

∫
B(0,ε)

f(y)(
1

εn−2
− 1

|y|n−2
)dy)

Suppose that we proved

lim
ε→0

∫
B(0,ε)

f(y)(
1

εn−2
− 1

|y|n−2
)dy = 0 (3.3)
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Then

φ(r)− u(0) = lim
ε→0

φ(r)− φ(ε) by (3.1)

= lim
ε→0

∫ r

ε

φ′(s)ds

= lim
ε→0

−1

n(n− 2)α(n)
(

∫
B(0,r)

f(y)(
1

|y|n−2
− 1

rn−2
)dy +

∫
B(0,ε)

f(y)(
1

εn−2
− 1

|y|n−2
)dy)

=
−1

n(n− 2)α(n)

∫
B(0,r)

f(y)(
1

|y|n−2
− 1

rn−2
)dy

Therefore

u(0) = φ(r) +
1

n(n− 2)α(n)

∫
B(0,r)

f(y)(
1

|y|n−2
− 1

rn−2
)dy

=
1

nα(n)rn−1

∫
∂B(0,r)

u(y)dS(y) +
1

n(n− 2)α(n)

∫
B(0,r)

f(y)(
1

|y|n−2
− 1

rn−2
)dy

But u = g on ∂B(0, r), so the equality holds. So we only need to prove (3.3)

lim
ε→0

∫
B(0,ε)

f(y)(
1

εn−2
− 1

|y|n−2
)dy = lim

ε→0

1

εn−2

∫
B(0,ε)

f(y)dy − lim
ε→0

∫
B(0,ε)

f(y)

|y|n−2

But

lim
ε→0

1

εn−2

∫
B(0,ε)

f(y)dy = lim
ε→0

nα(n)ε2
1

m(B(0, ε))

∫
B(0,ε)

f(y)dy

= lim
ε→0

nα(n)ε2f(0)

= 0

and

lim
ε→0

∫
B(0,ε)

f(y)

|y|n−2
= lim

ε→0

∫ ε

0

∫
∂B(0,t)

f(y)

|y|n−2
dS(y)dt

= lim
ε→0

∫ ε

0

1

tn−2

∫
∂B(0,t)

f(y)dS(y)dt

= lim
ε→0

∫ ε

0

nα(n)t
1

m(∂B(0, t))

∫
∂B(0,t)

f(y)dS(y)dt

= lim
ε→0

∫ ε

0

nα(n)tf(0)dt

= lim
ε→0

nα(n)f(0)
ε2

2
= 0

Therefore

lim
ε→0

∫
B(0,ε)

f(y)(
1

εn−2
− 1

|y|n−2
)dy = 0

so we are done.

4. First note that U and ∂U is compact, since U is bounded and open. So maxu = sup u on
both U and ∂U . Define uε := u + ε|x|2 for each ε > 0. Then for x ∈ U , ∂uε

∂xi
= uxi + 2εxi, so

∆uε = ∆u + 2nε = 2nε > 0 since u is harmonic and ε > 0. But tr(Hess(uε)) = ∆uε(x) > 0,
so Hess(uε)(x) is cannot be negative definite matrix. Therefore, x cannot be local maximum of the
function uε, so uε cannot attain its max within U . Therefore, we conclude that

max
U

uε = max
∂U

uε
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Since we know that U is bounded, we can assume U ⊂ B(0, R) for some R > 0. Then

max
U

u ≤ max
U

uε = max
∂U

uε ≤ max
∂U

u +max
∂U

ε|x|2 ≤ max
∂U

u+ εR2

Let ε→ 0, then max
U

u ≤ max
∂U

u. Since ∂U ⊂ U , we conclude max
U

u = max
∂U

u

5. (a) As in the proof in the mean value property (or in the problem 3), define a function

Φ(s) =
1

nα(n)sn−1

∫
∂B(x,s)

v(y)dS(y)

then the book proves

Φ′(s) =
1

nα(n)sn−1

∫
B(x,s)

∆v(y)dy

so Φ′(s) ≥ 0 since ∆v ≥ 0. Therefore Φ(r) ≥ Φ(ε) for all r > ε > 0. But lim
ε→0

v(ε) = v(x) since Φ is an

average integral of the function v.

(b) Assume that U is connected. Let M := max
U

u and S = {x ∈ U
∣∣v(x) = M}. If S is an empty

set, then clearly max
U

= max
∂U

u, so we are done. Assume that S is not an empty set. We’ll prove that S

is both open and relatively closed, which will led us to say S = U since U is connected. Let a ∈ S and
δ > 0 such that B(a, δ) ⊂ U . Then for all δ ≥ ε > 0

v(a) =
1

nα(n)sn−1

∫
∂B(a,δ)

v(y)dS(y) ≤ v(a)

therefore v = v(a) within B(a, δ), ie B(a, δ) ⊂ S, so S is open. Moreover S is relatively closed since u is a
continuous function. Thus S = U , i.e. u is a constant function in U , and also in U since u is continuous.
Therefore max

U
= max

∂U
u. Since this is true for all connected parts of the nonconnected open set U , we

can say max
U

= max
∂U

u.

Second way
If U were bounded, we could use problem 4. Define vε(x) = v(x) + ε|x|2. Then ∆vε = ∆v+ 2nε > 0, the
rest are the same.

(c) We do straight calculation
∂v

∂xi
=
∂φ(u)

∂xi
= φ′(u)uxi

So
∂2v

∂x2
i

= φ′′(u)u2
xi + φ′(u)uxixi

Therefore

∆v = φ′′(u)
( n∑
i=1

u2
xi

)
+ φ′(u)∆u ≥ 0

(d) Follow the calculations

v = |Du|2 =

n∑
i=1

u2
xi

∂v

∂xk
=

n∑
i=1

2uxiuxixk
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∂2v

∂x2
k

= 2

n∑
i=1

u2
xixk

+ uxixkxk

∆v = 2

n∑
i,k=1

u2
xixk

+

n∑
i=1

∆uxi ≥
n∑
i=1

∆uxi

Since u is harmonic, uxi is harmonic for all i = 1, 2, ..., n. Thus ∆v ≥
∑n
i=1 ∆uxi = 0

6. Since U is bounded, we can assume that U ⊂ B(0, R) for some fixed R > 0. Choose C such that

C > max(1, R
2

2n ). Let’s define λ := max
U
|f | (??? can we, can f be extended continuously over U) Since

∆(u+ λ |x|
2

2n ) = ∆u+ n 2λ
2n ≥ 0 u+ λ |x|

2

2n is subharmonic. By the problem 5

max
U

(u+ λ
|x|2

2n
) = max

∂U
(u+ λ

|x|2

2n
)

≤ max
∂U
|u|+ λ

R2

2n

≤ max
∂U
|g|+ R2

2n
max
U
|f |

≤ C(max
∂U
|g|+ max

U
|f |)

7. We are assuming that u is harmonic in an open set U satisfying B(0, r) ⊂ U ⊆ <n. Let’s write
the Poisson’s formula x ∈ B(0, r),

u(x) =
r2 − |x|2

nα(n)

∫
∂B(0,r)

u(y)

|x− y|n
dy

Note that by the triangle inequality

r + |x| = |y|+ |x| ≥ |x− y| ≥ ||y| − |x|| = r − |x|

for y ∈ ∂B(0, r). Moreover, ∫
∂B(0,r)

u(y)dy = nα(n)rn−1u(0)

by the mean value property of the harmonic functions. Then

rn−2 r − |x|
(r + |x|)n−1

u(0) =
r2 − |x|2

nα(n)

∫
∂B(0,r)

u(y)

(r + |x|)n
dy ≤ r2 − |x|2

nα(n)

∫
∂B(0,r)

u(y)

|x− y|n
dy = u(x)

Similarly

rn−2 r + |x|
(r − |x|)n−1

u(0) =
r2 − |x|2

nα(n)

∫
∂B(0,r)

u(y)

(r − |x|)n
dy ≥ r2 − |x|2

nα(n)

∫
∂B(0,r)

u(y)

|x− y|n
dy = u(x)

8. (i) We’ll prove the Theorem 15 in the chapter 2.2. Take u = 1 in B(0, r) and consequently g = 1
on ∂B(0, r), then by theorem 12 (Representation Formula using Green’s function), for any x ∈ B(0, r)

1 = u(x) =

∫
∂B(0,r)

g(y)K(x, y)dS(y) =

∫
∂B(0,r)

K(x, y)dS(y) (8.1)

Let’s back to the problem. First, we shall show that uxi exist and it equals to
∫
∂B(0,r)

g(y)Kxi(x, y)dS(y).

It’s enough to show that

lim
h→0

u(x+ hei)− u(x)

h
=

∫
∂B(0,r)

g(y)Kxi(x, y)dS(y)
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Let’s denote

v(x, h) :=
u(x+ hei)− u(x)

h
=

∫
∂B(0,r)

g(y)
(K(x+ hei, y)−K(x, y)

h

)
dS(y)

By Mean Value Theorem, K(x+hei, y)−K(x, y) = hKxi(x+ γ(h), y) for some 0 < γ(h) < h. Therefore

v(x, h) =

∫
∂B(0,r)

g(y)Kxi(x+ γ(h), y)dS(y)

v(x, h)−
∫
∂B(0,r)

g(y)Kxi(x, y)dS(y) =

∫
∂B(0,r)

g(y)
(
Kxi(x+ γ(h), y)−Kxi(x, y)

)
dS(y)

Let µ := dist(x, ∂B(0, r)) = inf {|x − y|
∣∣y ∈ ∂B(0, r)} and consider the continuous function Kxi(x, y)

on the compact set U(0, r − µ
2 ) × ∂B(0, r). Thus Kxi(x, y) is uniformly continuous. Also, since g is

continuous in the compact set ∂B(0, r), g is also bounded. Assume |g| < M . Choose ε > 0. Since
Kxi(x, y) is uniformly continuous, there exist δ > 0 such that |(x1, y1) − (x2, y2)|<2n < δ implies
|Kxi(x1, y1)−Kxi(x2, y2)| < ε Thus, for h < min {µ, δ},∣∣v(x, h)−

∫
∂B(0,r)

g(y)Kxi(x, y)dS(y)
∣∣ =

∣∣ ∫
∂B(0,r)

g(y)
(
Kxi(x+ γ(h), y)−Kxi(x, y)

)
dS(y)

∣∣
≤

∫
∂B(0,r)

|g(y)|
∣∣Kxi(x+ γ(h), y)−Kxi(x, y)

∣∣dS(y)

≤
∫
∂B(0,r)

|g(y)|
∣∣Kxi(x+ γ(h), y)−Kxi(x, y)

∣∣dS(y)

≤
∫
∂B(0,r)

|g(y)|εdS(y)

≤ Mεnα(n)rn−1

which goes 0 as ε goes 0. Therefore lim
h→0

u(x+hei)−u(x)
h exist and it equals to

∫
∂B(0,r)

g(y)Kxi(x, y)dS(y)

In the same way, we can prove for all α = (α1, α2, ..., αn),

Dαu(x) =

∫
∂B(0,r)

g(y)DαK(x, y)dS(y)

since K is smooth, so is u, i.e u ∈ C∞(B(0, r))

(ii) By (i), we can say ∆u =
∫
∂B(0,r)

g(y)∆xK(x, y)dS(y). But ∆xK(x, y) = 0 within B(0, r) (I

may add calculation) so ∆u = 0

(iii) We’ll follow the similar path as in the proof of the theorem 14. Let ε > 0, since g is continuous,
choose δ > 0 such that |y−x0| < δ implies |g(y)−g(x0)| < ε. Moreover, since g is defined in the compact
set ∂B(0, r), it is bounded, assume |g| < M . By (8.1),

|u(x)− g(x0)| =
∣∣ ∫
∂B(0,r)

g(y)K(x, y)dS(y)−
∫
∂B(0,r)

g(x0)K(x, y)dS(y)
∣∣

=
∣∣ ∫
∂B(0,r)

(g(y)− g(x0))K(x, y)dS(y)
∣∣

≤
∫
∂B(0,r)

|g(y)− g(x0)|K(x, y)dS(y)

=

∫
∂B(0,r)∩B(x0,δ)

|g(y)− g(x0)|K(x, y)dS(y) +∫
∂B(0,r)−B(x0,δ)

|g(y)− g(x0)|K(x, y)dS(y)

= I + J
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Clearly I <
∫
∂B(0,r)∩B(x0,δ)

εK(x, y)dS(y) < ε
∫
∂B(0,r)

K(x, y)dS(y) = ε also by (8.1). Furthermore,

if |x− x0| < δ
2 and |y − x0| > δ, we have

|y − x0| < |y − x|+ |x− x0| < |y − x|+ δ

2
< |y − x|+ 1

2
|y − x|

therefore |y − x| > 1
2 |y − x

0|, so

K(x, y) =
r2 − |x|2

nα(n)|x− y|n
<

2n(r2 − |x|2)

nα(n)

1

|y − x0|n
<

2n(r2 − |x|2)

nα(n)δn

for |x − x0| < δ
2 and y ∈ ∂B(0, r) − B(x0, δ). By the triangle inequality, we have |g(y) − g(x0)| < 2M .

So finally

J < 2M

∫
∂B(0,r)−B(x0,δ)

2n(r2 − |x|2)

nα(n)δn
dS(y)

≤ 2M
2n(r2 − |x|2)

nα(n)δn
nα(n)rn−1

= (r2 − |x|2)
2n+1Mrn−1

δn

which goes 0 as x goes x0 since x0 ∈ ∂B(0, r) so |x| → |x0| = r

9. By Poisson’s formula for the half space, for x = (x1, x2, ..., xn) ∈ <n+

u(x) =
2xn
nα(n)

∫
∂<n+

g(y)

|x− y|n
dS(y) =

2xn
nα(n)

∫
<n−1

g̃(ỹ)

|x− y|n
dỹ

where ỹ = (y1, y2, ..., yn−1) ∈ <n−1 for y = (y1, y2, ..., yn−1, 0) ∈ ∂<n+. Let’s put x = λen = (0, 0, ..., λ),
then |x− y|2 = |ỹ|2 + λ2, therefore the equality becomes

u(λen) =
2

nα(n)

∫
<n−1

g̃(ỹ)
λ

(|ỹ|2 + λ2)
n
2 +1

dỹ

We’ll compute the partial derivative of u WRT xn at x = λen.

uxn(λen) =
∂

∂λ
u(λen)

=
∂

∂λ

2

nα(n)

∫
<n−1

g̃(ỹ)
λ

(|ỹ|2 + λ2)
n
2 +1

dỹ (9.0)

=
2

nα(n)

∫
<n−1

∂

∂λ
g̃(ỹ)

λ

(|ỹ|2 + λ2)
n
2 +1

dỹ

=
2

nα(n)

∫
<n−1

g(ỹ)
|ỹ|2 − (n− 1)λ2

|ỹ2 + λ2|n2 +1

=
2

nα(n)

∫ ∞
0

∫
∂Bn−1(0,r)

g(ỹ)
|ỹ|2 − (n− 1)λ2

(|ỹ|2 + λ2)
n
2 +1

dS(ỹ)dr (9.1)

=
2

nα(n)

∫ ∞
0

∫
∂Bn−1(0,r)

g(ỹ)
r2 − (n− 1)λ2

(r2 + λ2)
n
2 +1

dS(ỹ)dr

At (9.0), we used the fact in the proof of the theorem 14, which is uxi(x) =
∫
∂<n0

g(y)Kxi(x, y)dy

At 9.1, we used polar coordinates. Bn−1(0, r) denotes the open ball centered at origin with radious r in
<n−1. Define functions

f1(r, λ) =

∫
∂Bn−1(0,r)

g(ỹ)
r2

(r2 + λ2)
n
2 +1

dS(ỹ)
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and

f2(r, λ) =

∫
∂Bn−1(0,r)

g(ỹ)
−(n− 1)λ2

(r2 + λ2)
n
2 +1

dS(ỹ)

Note that

uxn(λen) =

∫ ∞
1

f1(r, λ)dr +

∫ 1

0

f1(r, λ)dr +

∫ ∞
1

f2(r, λ)dr +

∫ 1

0

f2(r, λ)dr

Assume that we know
∫∞

1
f1(r, λ)dr,

∫∞
1
f2(r, λ)dr and

∫ 1

0
f2(r, λ)dr are bounded and lim

λ→0

∫ 1

0
f1(r, λ)dr =

∞. Then we can conclude that uxn(λen)→∞ as λ→ 0; therefore Du(λen) is not bounded near 0. Let’s
prove the assumptions. Since we know g is bounded, we assume |g| < M

∣∣∣∣∫ ∞
1

f1(r, λ)dr

∣∣∣∣ ≤ ∫ ∞
1

∫
∂Bn−1(0,r)

∣∣∣∣g(ỹ)
r2

(r2 + λ2)
n
2 +1

∣∣∣∣ dS(ỹ)dr

≤ M

∫ ∞
1

∫
∂Bn−1(0,r)

r2

(r2 + λ2)
n
2 +1

dS(ỹ)dr

= M

∫ ∞
1

(n− 1)α(n− 1)rn−2 r2

(r2 + λ2)
n
2 +1

dS(ỹ)dr

= M(n− 1)α(n− 1)

∫ ∞
1

rn

(r2 + λ2)
n
2 +1

dr (9.2)

≤ M(n− 1)α(n− 1)

∫ ∞
1

r

(r2 + λ2)
3
2

dr

= M(n− 1)α(n− 1)

(
−1

(r2 + λ2)
1
2

∣∣∣∣∞
1

)
= M(n− 1)α(n− 1)

1

λ2 + 1
≤ M(n− 1)α(n− 1)

Note that at (9.2), we used the inequality

rn

(r2 + λ2)
n
2 +1

=
r

(r2 + λ2)
3
2

(
r

(r2 + λ2)
1
2

)n−1

≤ r

(r2 + λ2)
3
2

We find that
∫∞

1
f1(r, λ)dr is bounded. For the second assumption∣∣∣∣ ∫ ∞

1

f2(r, λ)dr

∣∣∣∣ ≤ ∫ ∞
1

∫
∂Bn−1(0,r)

∣∣∣∣g(ỹ)
−(n− 1)λ2

(r2 + λ2)
n
2 +1

∣∣∣∣dS(ỹ)dr

≤ M(n− 1)λ2

∫ ∞
1

∫
∂Bn−1(0,r)

1

(r2 + λ2)
n
2 +1

dS(ỹ)dr

= M(n− 1)2α(n− 1)λ2

∫ ∞
1

rn−2

(r2 + λ2)
n
2 +1

dr (9.3)

≤ M(n− 1)2α(n− 1)λ2

∫ ∞
1

r

(r2 + λ2)
3
2

dr

= M(n− 1)2α(n− 1)λ2

(
−1

(r2 + λ2)
1
2

∣∣∣∣∞
1

)
= M(n− 1)2α(n− 1)

λ2

λ2 + 1

≤ M(n− 1)2α(n− 1)

At (9.3) we used the inequality

rn−2

(r2 + λ2)
n
2 +1

=
r

(r2 + λ2)
3
2

(
r

(r2 + λ2)
1
2

)n−1
1

r2
≤ r

(r2 + λ2)
3
2
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The inequality is true for r > 1, which is enough since we integrate from 1 to ∞. For third assumption,
realize that for r ≤ 1

f2(r) =

∫
∂Bn−1(0,r)

|ỹ| −(n− 1)λ2

(r2 + λ2)
n
2 +1

dS(ỹ) = −λ2(n− 1)2α(n− 1)
rn−1

(r2 + λ2)
n
2 +1

Since g(ỹ) = |ỹ| for |ỹ| ≤ 1. Therefore∣∣∣∣ ∫ ∞
1

f2(r, λ)dr

∣∣∣∣ ≤ λ2(n− 1)2α(n− 1)

∫ 1

0

rn−1

(r2 + λ2)
n
2 +1

≤ λ2(n− 1)2α(n− 1)

∫ 1

0

r

(r2 + λ2)2
(9.4)

≤ λ2(n− 1)2α(n− 1)

(
−1

2(r2 + λ2)

∣∣∣∣r=1

0

)
= (n− 1)2α(n− 1)

1

2(λ2 + 1)

≤ 1

2
(n− 1)2α(n− 1)

At (9.4), we used the inequality

rn−1

(r2 + λ2)
n
2 +1

=
r

(r2 + λ2)2

(
r

(r2 + λ2)
1
2

)n−2

≤ r

(r2 + λ2)2

since n > 1.
Let’s prove the last assumption. For r < 1

f1(r, λ) =

∫
∂Bn−1(0,r)

g(ỹ)
r2

(r2 + λ2)
n
2 +1

dS(ỹ)

=

∫
∂Bn−1(0,r)

|ỹ| r2

(r2 + λ2)
n
2 +1

dS(ỹ)

=

∫
∂Bn−1(0,r)

r3

(r2 + λ2)
n
2 +1

dS(ỹ)

= (n− 1)α(n− 1)rn−2 r3

(r2 + λ2)
n
2 +1

= (n− 1)α(n− 1)
rn+1

(r2 + λ2)
n
2 +1

since g(ỹ) = |ỹ| for |ỹ| ≤ 1. Let (n− 1)α(n− 1) = µ. Then∫ 1

0

f1(r, λ)dr = µ

∫ 1

0

rn+1

(r2 + λ2)
n
2 +1

dr

≥ µ

∫ 1

λ

rn+1

(r2 + λ2)
n
2 +1

dr (9.5)

≥ µ

∫ 1

λ

1

2
n
2 +1

1

r
dr

= µ
1

2
n
2 +1

∫ 1

λ

1

r
dr

=
µ

2
n+2
2

(
log(r)

∣∣∣∣1
λ

)
=

µ

2
n+2
2

(−log(λ))
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which goes infinity as λ→ 0. Note that at (9.5), we used inequality

rn+1

(r2 + λ2)
n
2 +1
≥ 1

2
n
2 +1

1

r

which is equivalent
(2r2)

n
2 +1 ≥ (r2 + λ2)

n
2 +1

which is true for r ≥ λ, so we are done.

11. First, let’s focus on the function x̃ : <n → <n which takes x to x̃
|x|2 .

x̃ = x̃(x) = (x1|x|−2, x2|x|−2, ..., xn|x|−2)

and

D(x̃) = Dx(x̃) =


(|x|2 − 2x2

1)|x|−4 −2x1x2|x|−4 −2x1x3|x|−4 · · · −2x1xn|x|−4

−2x2x1|x|−4 (|x|2 − 2x2
2)|x|−4 −2x2x3|x|−4 · · · −2x2xn|x|−4

−2x3x1|x|−4 −2x3x2|x|−4 (|x|2 − 2x2
3)|x|−4 · · · −2x3xn|x|−4

...
...

...
. . .

...
−2xnx1|x|−4 −2xnx2|x|−4 −2xnx3|x|−4 · · · (|x|2 − 2x2

n)|x|−4


Let’s denote D(x̃) = (αij(x)) where

αij(x) =
(
D(x̃)

)
ij

=
∂

∂xj

(
xi
|x|2

)
=

{
−2xixj |x|−4 if j 6= i

(|x|2 − 2x2
i )|x|−4 if j = i

Clearly αij = αji , ie the matrixD(x̃) is symmetric. Let ri(x) = (α1
i (x), α2

i (x), ..., αni (x)) = (αi1(x), αi2(x), ..., αin(x)

denote the ith row and column. Note that ri(x) = D
(
xi
|x|2
)
.

Lemma 1. D(x̃) ·D(x̃) = |x|−4 · I
Proof We need to prove that

ri(x) · rj(x) =

{
|x|−4 if j = i

0 otherwise

For j = i

ri(x) · ri(x) =

n∑
k=1

(αik(x))2

= ((|x|2 − 2x2
i )|x|−4)2 +

n∑
k=1,k 6=i

(−2xixk|x|−4)2

= (|x|4 − 4|x|2x2
i + 4x4

i )|x|−8 +

n∑
k=1,k 6=i

4x2
ix

2
k|x|−8

= |x|−8

(
|x|4 − 4|x|2x2

i + 4x2
i

n∑
k=1

x2
k

)
= |x|−4

10



For j 6= i

ri(x) · rj(x) =

n∑
k=1

αik(x)αjk(x)

= −2xjxi|x|−4(|x|2 − 2x2
i )|x|−4 − 2xjxi|x|−4(|x|2 − 2x2

j )|x|−4 +

n∑
k=1,k 6=i,j

4xixjx
2
k|x|−8

= 2xixj |x|−8

(
2x2

i + 2x2
j − 2|x|2 +

n∑
k=1,k 6=i,j

2x2
k

)

= 2xixj |x|−8

(
− 2|x|2 +

n∑
k=1

2x2
k

)
= 0

So the lemma is proved.

Corollary (1)

ri(x) · rj(x) =

{
|x|−4 if j = i

0 otherwise

Let’s continue the problem. By product rule

D(ũ(x)) = D(u(x̃)|x|2−n) = Du(x̃) ·D(x̃)|x|2−n + u(x̃)D(|x|2−n)

So
∂

∂xi
ũ(x) = Du(x̃) · ri(x)|x|2−n + u(x̃)(2− n)xi|x|−n

∂2

∂x2
i

ũ(x) =
∂

∂xi
(Du(x̃)) · ri(x)|x|2−n +Du(x̃) ·

(
∂

∂xi
ri(x)

)
|x|2−n + (2− n)Du(x̃) · ri(x)xi|x|−n+

+(2− n)

(
∂

∂xi
u(x̃)

)
xi|x|−n + (2− n)u(x̃)|x|−n + n(n− 2)u(x̃)x2

i |x|−n−2

We shall prove that

(1)

n∑
i=1

∂

∂xi
(Du(x̃)) · ri(x)|x|2−n = 0

(2)

n∑
i=1

Du(x̃) ·
(

∂

∂xi
ri(x)

)
|x|2−n = −2(n− 2)|x|−2−nDu(x̃) · x

(3)

n∑
i=1

(2− n)Du(x̃) · ri(x)xi|x|−n = (n− 2)|x|−2−nDu(x̃) · x

(4)

n∑
i=1

(2− n)

(
∂

∂xi
u(x̃)

)
xi|x|−n = (n− 2)|x|−2−nDu(x̃) · x

(5)

n∑
i=1

n(n− 2)u(x̃)x2
i |x|−n−2 = n(n− 2)u(x̃)|x|−n

Note that (2)+(3)+(4)=0 and (5)=n(n− 2)u(x̃)|x|−n = −
∑n
i=1(2− n)u(x̃)|x|−n, therefore if (1)-

(5) are all true, we can conclude that ∆ũ = 0. Let’s start to prove claims

Proof (1) We shall prove that
∑n
i=1

∂
∂xi

(Du(x̃)) · ri(x) = 0, then we can immediately conclude that

11



∑n
i=1

∂
∂xi

(Du(x̃)) · ri(x)|x|2−n = 0. First, let’s calculate ∂
∂xi

(Du(x̃)) = ∂
∂xi

(ux1(x̃), ux2(x̃), ..., uxn(x̃)).
For j = 1, 2, 3, ..., n,

∂

∂xi

(
uxj (x̃)

)
= Duxj (x̃) · ri(x) = (uxjx1(x̃), uxjx2(x̃), ..., uxjxn(x̃)) · ri(x) =

n∑
k=1

uxjxkα
i
k(x)

So
∂

∂xi
(Du(x̃)) · ri(x) =

n∑
j=1

n∑
k=1

uxjxkα
i
k(x)αij(x)

Therefore

n∑
i=1

∂

∂xi
(Du(x̃)) · ri(x) =

n∑
i=1

n∑
j=1

n∑
k=1

uxjxk(x̃)αik(x)αij(x)

=

n∑
j,k=1

uxjxk(x̃)

n∑
i=1

αik(x)αij(x)

=

n∑
j,k=1

uxjxk(x̃)rj(x)ri(x) (11.1)

=

n∑
j=1

uxjxj (x̃)|x|−4

= |x|−4∆u(x̃)

= 0

since u is harmonic. At (11.1), we used corollary 1

Proof (2) Let’s start by calculating ∂
∂xi

ri(x). For j 6= i

∂

∂xi
αij(x) =

∂

∂xi
(−2xixj |x|−4) = −2xj |x|−4 + 8xjx

2
i |x|−6

and for j = i
∂

∂xi
αii =

∂

∂xi
(|x|−2 − 2x2

i |x|−4) = −6xi|x|−4 + 8x3
i |x|−6

So
n∑
i=1

Du(x̃) ·
(

∂

∂xi
ri(x)

)
=

n∑
i=1

n∑
j=1

uxj (x̃)
∂

∂xi
αij(x)

=

n∑
j=1

uxj (x̃)

n∑
i=1

∂

∂xi
αij(x)

=

n∑
j=1

uxj (x̃)

(
− 6xj |x|−4 + 8x3

j |x|−6 +

n∑
i=1,i6=j

−2xj |x|−4 + 8xjx
2
i |x|−6

)

=

n∑
j=1

uxj (x̃)

(
(−2n− 4)xj |x|−4 + 8xj |x|−6

n∑
i=1

x2
i

)

=

n∑
j=1

uxj (x̃)
(
(−2n− 4)xj |x|−4 + 8xj |x|−4)

= −2(n− 2)|x|−4
n∑
j=1

uxj (x̃) · xj

= −2(n− 2)|x|−4Du(x̃) · x
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Finally

n∑
i=1

Du(x̃) ·
(

∂

∂xi
ri(x)

)
|x|2−n = −2(n− 2)|x|−4Du(x̃) · x|x|2−n = −2(n− 2)|x|−n−2Du(x̃) · x

so we proved (2).

Proof (3) We do straight calculation

n∑
i=1

Du(x̃) · ri(x)xi =

n∑
i=1

n∑
j=1

uxj (x̃)αij(x)xi

=

n∑
j=1

(
uxj (x̃)

n∑
i=1

αij(x)xi

)

=

n∑
j=1

(
uxj (x̃)

(
xj |x|−2 − 2x3

j |x|−4 +

n∑
i=1,i6=j

−2xix
2
j |x|−4

))

=

n∑
j=1

(
uxj (x̃)

(
xj |x|−2 − 2xj

n∑
i=1

x2
i |x|−4

))

= −
n∑
j=1

uxj (x̃)xj |x|−2

= −|x|−2Du(x̃) · x

Finally

n∑
i=1

(2− n)Du(x̃) · ri(x)xi|x|−n = (2− n)|x|−n(−|x|−2Du(x̃) · x

= (n− 2)|x|−2−nDu(x̃) · x

Proof (4) Since ∂
∂xi

ux̃ = Du(x̃) = Du(x̃)ri(x), we can immediately see (4)=(3), so we are done.

Proof (5) This is also trivial, as follows

n∑
i=1

n(n− 2)u(x̃)x2
i |x|−n−2 = n(n− 2)u(x̃)|x|−n−2

n∑
i=1

x2
i

= n(n− 2)u(x̃)|x|−n−2|x|2

= n(n− 2)u(x̃)|x|−n

12. Let’s use the notation u(x, t;λ) := uλ(x, t) = u(λx, λ2t).
(a) We do straight calculation

∂

∂t
u(x, t;λ) =

∂

∂t
u(λx, λ2t) = λ2ut(λx, λ

2t)

∂

∂xi
u(x, t;λ) =

∂

∂xi
u(λx, λ2t = λuxi(λx, λ

2t)

∂2

∂x2
i

u(x, t;λ) =
∂

∂xi
λuxi(λx, λ

2t) = λ2uxixiu(λx, λ2t)
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Therefore
ut(x, t;λ)−∆xu(x, t;λ) = λ2ut(λx, λ

2t)− λ2∆xu(λx, λ2t) = 0

so uλ(x, t) = u(x, t;λ) solves heat equation.

(b)
∂

∂λ
u(x, t;λ) =

∂

∂λ
u(λx, λ2t) = x ·Dxu(λx, λ2t) + 2λtut(λx, λ

2t)

Since u(x, t) is smooth, so is u(x, t;λ). Therefore the derivatives commutes. More precisely,

(
∂

∂t
−∆x)

( ∂
∂λ
u(x, t;λ)

)
=

∂

∂λ

(
(
∂

∂t
−∆x)u(x, t;λ)

)
= 0

by (a). So the function ∂
∂λu(x, t;λ) solves the heat equation for fixed λ. Take λ = 1, then

∂

∂λ
u(x, t;λ) =

∂

∂λ
u(x, t; 1) = x ·Dxu(x, t) + 2tut(x, t)

solves the heat equation.

13. (a) Let z = z(x, t) = x√
t
. Then

ut(x, t) =
∂

∂t
v(

x√
t
) = −1

2

x

t
3
2

v′(z(x, t))

ux(x, t) =
∂

∂x
v(

x√
t
) =

1√
t
v′(z(x, t))

uxx(x, t) =
∂

∂x

1√
t
v′(

x√
t
) =

1

t
v′′(z(x, t))

Therefore
ut = uxx

⇐⇒

−1

2

x

t
3
2

v′(z(x, t)) =
1

t
v′′(z(x, t))

⇐⇒

−1

2
z(x, t)v′(z(x, t)) = v′′(z(x, t))

⇐⇒

(*) v′′(z) +
z

2
v′(z) = 0

By (*), v′ satisfies v′′

v′ = − z2 , so

log(v′) =

∫
v′′

v′
+ C1 =

∫
−z
2

+ C1 = −z
2

4
+ C1

v′(z) = e−z
2/4+C1 = ce−z

2/4

where c = eC1 is a constant. Thus

v(z) =

∫
v′(s)ds+ d = c

∫
e−s

2/4ds+ d
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14. Define function v(x, t) = u(x, t)ect. Then

vt −∆v = ute
ct + ucect − ect∆u = ect(ut −∆u+ cu) = ectf (14.1)

and clearly v = g on <n × {t = 0}. Using THEOREM 2 in section 2.3.1, the function

v(x, t) =

∫
<n

Φ(x− y, t)g(y)dy +

∫ t

0

∫
<n

Φ(x− y, t− s)f(y, s)ecsdyds

solves the equation (14.1). Thus the function u(x, t) = v(x, t)e−ct solves the system of equation.

16. Define uε(x, t) = u(x, t) − εt for each ε > 0. We will prove first that uε attains it’s maximum
on ΓT . For sake of contradiction, assume that uε has maximum at (x0, t0) ∈ UT = U × (0, T ]. Define
v : U → < with v(x) = uε(x, t

0). Then v has maximum at x0 ∈ U . Since u ∈ C2
1 (UT ) ∩ C(UT ), we have

v ∈ C2
1 (U) ∩ C(U). Thus we must have Hess(v)(x0) is a negative definite matrix. So we must have

∆v(x0) = tr(Hess(v)(x0)) < 0 (16.1)

We’ll consider two cases.

Case 1: t0 < T
Since (x0, t0) ∈ U × (0, T ) is global maximum, we have ∂

∂tuε(x
0, t0) = 0. So

0 =
∂

∂t
uε(x

0, t0) = ut(x
0, t0)− ε

Therefore we have
ut(x

0, t0) = ε (16.2)

But

∆v(x0) = ∆xuε(x
0, t0)

= ∆u(x0, t0)

= ut(x
0, t0) by (16.2)

= ε

> 0

using (16.1), we get a contradiction.

Case 2: t0 = T
Since uε(x

0, t0) is global maximum, there exist 0 < T ′ < T such that ∂
∂tuε(x

0, t) ≥ 0 for all t ∈ (T ′, T ).
Since u solve heat equation

0 ≤ ∂

∂t
uε(x

0, t)

= ut(x
0, t)− ε

= ∆u(x0, t)− ε

so
∆u(x0, t) ≥ ε (16.3)

for all t ∈ (T ′, T ). Also we know that ∆v(x0) = ∆xuε(x
0, T ) = ∆xu(x0, T ). Since u ∈ C2

1 (UT ) ∩C(UT ),
∆xu is continuous. Using (16.3), we conclude that ∆v(x0) ≥ ε > 0, which is a contradiction with (16.1).

Corollary: For all ε > 0
max
UT

uε = max
ΓT

uε
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By using the corollary, let’s prove that u also attains its maximum on ΓT . Since u = uε + εt

max
UT

u ≤ max
UT

(uε + εt)

≤ max
UT

uε +max
UT

εt (use corollary)

≤ max
ΓT

uε + εT

≤ max
ΓT

u+ εT

Let ε→ 0, then max
UT

u ≤ max
ΓT

u. Since ΓT ⊂ UT , we conclude max
UT

u = max
ΓT

u

17. NOTE : The reader should read the proof of THEOREM 3(A mean-value property for the
heat equation) at 2.3.2 before start reading the solution.

(a)We modify the proof of the THEOREM 3. Put v instead of u in the proof. We know that

φ′(r) = A+B

=
1

rn+1

∫ ∫
E(r)

−4nvsψ −
2n

s

n∑
i=1

vyiyidyds

Since ψ defined to be

ψ = −n
2

log(−4πs) +
|y|2

4s
+ nlog r = log(Φ(y,−s)rn)

ψ ≥ 0 in E(r) because Φ(y,−s)rn ≥ 1 in E(r). Thus 4nψ(vs −∆v) ≤ 0, −4nψvs ≥ −4n∆v. Then we
have inequality

φ′(r) =
1

rn+1

∫ ∫
E(r)

−4nvsψ −
2n

s

n∑
i=1

vyiyidyds

≥ 1

rn+1

∫ ∫
E(r)

−4n∆vψ − 2n

s

n∑
i=1

vyiyidyds

= 0

according to the proof of the Theorem 3. So we have

φ(r) ≥ φ(ε)

for all r > ε > 0. But we know
lim
ε→0

φ(ε) = 4v(0, 0)

So we have inequality
1

rn

∫ ∫
E(r)

v(y, s)
|y|2

s2
dyds = φ(r) ≥ 4v(0, 0)

At first, the book choses x = t = 0 without losing generality, so we

1

4rn

∫ ∫
E(x,t;r)

v(y, s)
|x− y|2

(t− s)2
dyds ≥ v(x, t)
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(b) We modify the proof of the THEOREM 4 at 2.3.2 (Strong Maximum Principle for the Heat
Equation). In the proof, put v instead of u. Assume that there exist a point (x0, t0) ∈ UT with
v(x0, t0) = M := max

UT

u. Then for sufficiently small r > 0, E(x0, t0; r) ⊂ UT , thus

M = v(x0, t0)

≤ 1

4rn

∫ ∫
E(x0,t0;r)

v(y, s)
|x− y|2

(t− s)2
dyds

≤ M
1

4rn

∫ ∫
E(x0,t0;r)

|x− y|2

(t− s)2
dyds

= M

so we must have v(y, s) = M for (y, s) ∈ E(x0, t0; r). The rest of the proof is the same.

(c) Follow the equations
vt = φ′(u)ut

vxi = φ′(u)uxi

vxixi = φ′′(u)u2
xi + φ′(u)uxixi

Thus we have

vt −∆v = φ′(u)ut − φ′(u)∆u− φ′′(u)

n∑
i=1

u2
xi ≤ 0

(d) v = |Du|2 + u2
t = u2

t +
∑n
j=1 u

2
xj , so we

vt = 2ututt + 2

n∑
j=1

uxjuxjt (17.1)

vxi = 2ututxi + 2

n∑
j=1

uxjuxjxi

vxixi = 2
(
ututxixi + u2

txi +

n∑
j=1

uxjuxjxixi + u2
xjxi

)
so we have

∆v =

n∑
i=1

vxixi

= 2

n∑
i=1

(
ututxixi + u2

txi +

n∑
j=1

uxjuxjxixi + u2
xjxi

)

= 2

( n∑
i=1

u2
txi +

n∑
i,j=1

u2
xixj + ut∆ut +

n∑
j=1

uxj∆uxj

)
(17.2)

since u solves heat equation, so does ut and uxi for i = 1, 2, ..., n. This is true since differentiation
commutes. Thus (17.2) becomes

∆v = 2

( n∑
i=1

u2
txi +

n∑
i,j=1

u2
xixj + ut∆ut +

n∑
j=1

uxj∆uxj

)

= 2

( n∑
i=1

u2
txi +

n∑
i,j=1

u2
xixj

)
+ 2ututt + 2

n∑
j=1

uxjuxjt

≥ 2ututt + 2

n∑
j=1

uxjuxjt

= vt (by 17.1)
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thus we have ∆v ≥ vt, so v is a subsolution.

18. Since u is smooth, differentiation commutes, so

vtt −∆v = uttt −∆ut

=
∂

∂t
(utt −∆u)

= 0

Moreover, v = ut = h on <n × {t = 0} and

vt(x, 0) =
∂

∂t
ut(x, 0) =

∂

∂t
h(x) = 0

so vt = 0 on <n × {t = 0}.

19. (a) We have 0 = uxy = ∂
∂xuy, so uy is constant as x changes, thus uy only depends on y. Say

uy(x, y) = c(y). By Fundamental Theorem of Calculus, we have

u(x, y)− u(x, 0) =

∫ y

0

uy(x, z)dz =

∫ y

0

c(z)dz (19.1)

Let F (x) := u(x, 0) and G(y) :=
∫ y

0
c(z)dz. By 19.1, we have u(x, y) = F (x) +G(y).

(b) ξ and η are defined to be ξ = ξ(x, t) = x+ t and η = η(x, t) = x− t. We have an equality

u(x, t) = u(
ξ + η

2
,
ξ − η

2
)

Thus we have

uξ = uξ(x, t) =
1

2
ux(

ξ + η

2
,
ξ − η

2
) +

1

2
ut(

ξ + η

2
,
ξ − η

2
)

uξη = uξη(x, t) =
1

2
(
1

2
uxx −

1

2
uxt) +

1

2
(
1

2
utx −

1

2
utt) =

1

4
(uxx − utt)

Now it is clear to see
utt − uxx = 0 ⇐⇒ uξη = 0
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SOLUTIONS OF CHAPTER 3

1. Trivially ut(x, t, a, b) = −H(a) and Du(x, t, a, b) = a so ut + H(Du) = −H(a) + H(a) = 0.
Denote y = (x, t) ∈ <n+1, c = (a, b) ∈ <n+1 and u(y, c) = u(x, t, a, b). Only thing left to prove is
rank(Dcu,D

2
ycu) = n+ 1

Dcu,D
2
ycu =


x1 1 0 0 · · · 0 0
x2 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

xn 0 0 0 · · · 1 0
1 −Ha1(a) −Ha2(a) −Ha3(a) · · · −Han(a) 0


The matrix Dcu,D

2
yau (i.e. the left (n+ 1)× (n+ 1) part of the matrix Dcu,D

2
ycu) has determinant

(−1)n, so it has rank n+ 1, so we are done.

2. (i) for u(x; a) = x1 + a2x2 − 2a
Dau(x; a) = 2ax2 − 2 so for φ(x) = φ(x1, x2) = 1

x2
, the function solves the equation Dau(x;φ(x)) = 0.

The envelope is

v(x) = u(x;φ(x)) = u(x1, x2;
1

x2
) = x1 −

1

x2

(ii) for u(x; a) = 2a1x1 + 2a2x2 − x3 + a2
1 + a2

2

Dau(x; a) = (2x1 + 2a1, 2x2 + 2a2) so the function φ(x) = φ(x1, x2, x3) = (−x1,−x2) solves the equation
Dau(x;φ(x)) = 0. The envelope is

v(x) = u(x;φ(x)) = −x2
1 − x2

2 + x3

3. (a) Let’s write the equation

G(x, u, a) = G(x, u(x, a), a) = 0

Gxi(x, u, a) +Gz(x, u, a)uxi = 0

for the function G(x, z, a) =
∑n
j=1 ajx

2
j + z3 The equation is

2aixi + 3u2uxi = 0

Therefore
3

2
u2uxixi = −aix2

i

if we add up for all i’s, we find that

3

2
u2Du · x =

n∑
i=1

3

2
u2uxixi =

n∑
i=1

−aix2
i = u3

Therefore u(x, a) solves the PDE

F (Du, u, x) =
3

2
Du · x− u = 0

(b) to be continued...

4. (a) Let’s write y = (x, t) and consider characteristic equations for y(s) = (x(s), t(s)), q(s) =
(Dux(y(s)), ut(y(s))) and z(s) = u(y(s)) Then the PDE becomes

F (q, z, y) = q · (b, 1)− f(y) = 0
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Therefore
DqF (q, z, y) = (b, 1)

DyF (q, z, y) = Dyf(y)

DzF (q, z, y) = 0

Then the characteristic equations are
.
y(s) = (b, 1)

z′(s) =
.
z(s) = (b, 1) · q(s) = b ·Du(y(s)) + ut(y(s)) = f(y(s))

.
q(s) = −Dyf(y(s))

(b) Let’s choose y(s) = (bs+ c, s) for some constant c ∈ <n. We need to find proper s and s to have
equality y(s) = (x, t). Clearly t = s and c = x− bt. Therefore

y(s) = (x+ b(s− t), s)

By Fundamental theorem of calculus,

z(t)− z(0) =

∫ t

0

z′(s)ds

=

∫ t

0

f(z(s))ds

=

∫ t

0

f(x+ b(s− t), s)ds

But z(0) = u(y(0)) = u(x− bt, 0) = g(x− bt), so

u(x, t) = z(t) = g(x− bt) +

∫ t

0

f(x+ b(s− t), s)ds

which agrees with the formula in 2.1.2

5. (a) Let’s read the equation as

F (Du, u, x) = x ·Du− 2u = 0

so the function F (p, z, x) satisfies
F (p, z, x) = p · x− 2z = 0

DpF (p, z, x) = x

DxF (p, z, x) = p

DzF (p, z, x) = −2

Therefore the characteristic equations are

.
x(s) = x(s)

.
z(s) = x(s) · p(s) = 2z(s)

.
p(s) = −p(s)− (−2)p(s) = p(s)

Let’s choose
x(s) = (x1(s), x2(s)) = (C1e

s, es)

for some constant C1. Moreover, z(s) must be

z(s) = C2e
2s
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but
g(C1) = u(C1, 1) = u(x(0)) = z(0) = C2

so
z(s) = g(C1)e2s

For given (a, b), if we choose s = log(b) and C1 = a
b , we find that

x(s) = x(log(b)) = (C1b, b) = (a, b)

Thus
u(a, b) = u(x(log(b))) = z(log(b)) = g(C1)e2log(b) = g(

a

b
)b2

Finally, let’s prove that the function u(x1, x2) = g(x1

x2
)x2

2 indeed solves the equation system

x ·Du− 2u = 0

u(x1, 1) = g(x1)

The second equation is trivial, for the first equation

x1ux1
+ x2ux2

− 2u = x1g
′(
x1

x2
)

1

x2
x2

2 + x2(g(
x1

x2
)2x2 + g′(

x1

x2
)
−x1

x2
2

x2
2)− 2g(

x1

x2
)x2

2 = 0

(b) We can read the equation as F (Du, u, x) = 0 where

F (p, z, x) = p · (x1, 2x2, 1)− 3z = 0

the derivatives are
DpF (p, z, x) = (x1, 2x2, 1)

DxF (p, z, x) = (p1, 2p2, 0)

DzF (p, z, x) = −3

so the characteristic equations are
.
x(s) = (x1, 2x2, 1)

.
z(s) = DpF (p, z, x) · p = 3z(s)

.
p(s) = −(p1, 2p2, 0)− (−3)p = (2p1, p2, 3p3)

Considering equations, we can choose x(s) = (C1e
s, C2e

2s, s) and z(s) = C3e
3s. Putting s = 0

C3 = z(0) = u(x(0)) = u(C1, C2, 0) = g(C1, C2)

Let (x1, x2, x3) be given. Only thing left is to choose proper C1, C2 and s such that x(s) = (x1, x2, x3).
Clearly s = x3, C1 = x1e

−x3 and C2 = x2e
−2x3 . Finally

u(x1, x2, x3) = u(x(x3)) = g(C1, C2)e3x3 = g(x1e
−x3 , x2e

−2x3)e3x3

Let’s prove u indeed solves the PDE.

x1ux1
= x1gx1

(x1e
−x3 , x2e

−2x3)e2x3

2x2ux2 = 2x2gx2(x1e
−x3 , x2e

−2x3)ex3

ux3
= −gx1

x1e
−x1e3x3 − gx2

2x2e
−2x3)e3x3 + 3ge3x3 = −x1gx1

e2x2 − 2x2e
x3 + 3ge3x3

Therefore F (Du, u, x) = x1ux1
+ 2x2ux2

+ ux3
− 3u = 0

(c) We can read the equation as F (Du, u, x) = 0 where

F (p, z, x) = p · (z, 1)− 1
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the derivatives are
DpF (p, z, x) = (z, 1)

DxF (p, z, x) = 0

DzF (p, z, x) = p1

thus the characteristic equations are
.
x(s) = (z(s), 1)

.
z(s) = 1

Choose z(s) = s+ c1 and x2(s) = s. Since x′1(s) = z(s) = s+ c1, choose x1(s) = 1
2 (x+ c1)2 + c2. Assume

that for some s, x1(s) = s = x2(s), then

s+ c1 = z(s) = u(x(s)) = u(s, s) =
1

2
s

so s must be −2c1. Let’s put s = −2c1 in the equation x1(s) = s to find c2.

−2c1 = x(−2c1) =
1
c21 + c2

. Thus c2 = −2c1 − 1
2c

2
1. Let’s write c = c1 to simplify the notation. In summation, we find that

x(s) = (
1

2
(s+ c)2 − 1

2
c2 − 2c, s) = (

1

2
s2 + sc− 2c, s)

and

u(
1

2
s2 + sc− 2c, s) = u(x(s)) = z(s) = s+ c

We need to find proper s and c for given (x1, x2) such that x(s) = (x1, x2).

(x1, x2) = x(s) = (
1

2
s2 + sc− 2c, s)

so x2 = s and c(s− 2) = x1 − 1
2s

2 = x1 − 1
2x

2
2. Finally, for x2 6= 2,

c =
2x1 − x2

2

2(x2 − 2)

and

u(x1, x2) = u(x(x2))z(x2) = x2 + c = x2 +
2x1 − x2

2

2(x2 − 2)
=
x2

2 − 4x2 + 2x1

2(x2 − 2)

Let’s show that u =
x2
2−4x2+2x1

2(x2−2) is indeed a solution. For x1 = x2 6= 2, clearly u(x1, x1) = x1

2 . Also

ux1(x1, x2) =
1

x2 − 2

ux2
(x1, x2) =

(2x2 − 4)2(x2 − 2)− 2(x2
2 − 4x2 + 2x1)

(2(x2 − 2))2
= 1− uux1

Thus uux1
+ ux2

= 1, so we are done.

6. (a) Let x = (x1,x2, ...,xn) and b = (b1,b2, ...,bn)

J(s, x, t) = detDxx(s, x, t) = det(
∂xi

∂xj
) =

∑
σ∈Sn

(−1)sgn(n)
n∏
j=1

xjxσ(j)
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therefore J is a linear combination of functions fσ(s, x, t) = (−1)sgn(σ)
∏n
j=1 x

j
xσ(j)(s, x, t) where σ ∈ Sn.

We need to prove that

Js =
∑
σ∈Sn

∂fσ
∂s

= div(b(x))
∑
σ∈Sn

fσ

Let’s start to compute RHS

∂fσ
∂s

= (−1)sgn(σ) ∂

∂s

n∏
j=1

xjxσ(j) = (−1)sgn(σ)
n∑
i=1

∂

∂s
xixσ(i)

n∏
j=1, j 6=i

xjxσ(j)

Since x is smooth, we know that differentiation commutes, so

∂

∂s
xixσ(i) =

∂

∂xσ(i)
xis

By the given condition ∂x
∂s = ẋ = b(x) we know that xis = bi(x) for i = 1, 2, ..., n. Thus

∂

∂s
xixσ(i) =

∂

∂xσ(i)
xis =

∂

∂xσ(i)
bi(x) =

n∑
k=1

bixkx
k
xσ(i)

Therefore we find that

∂fσ
∂s

= (−1)sgn(σ)
n∑
i=1

(( n∑
k=1

bixkx
k
xσ(i)

) n∏
j=1, j 6=i

xjxσ(j)

)
Thus

Js =
∑
σ∈Sn

∂fσ
∂s

=
∑
σ∈Sn

(
(−1)sgn(σ)

n∑
i=1

(( n∑
k=1

bixkx
k
xσ(i)

) n∏
j=1, j 6=i

xjxσ(j)

))

=

n∑
i=1

n∑
k=1

bixk

( ∑
σ∈Sn

(−1)sgn(σ)xkxσ(i)

n∏
j=1, j 6=i

xjxσ(j)

)
but ∑

σ∈Sn

(−1)sgn(σ)xkxσ(i)

n∏
j=1, j 6=i

xjxσ(j) = detDx(x1,x,...,xi−1,xk,xi+1, ...,xn)

which is equal to J for i = k and 0 for i 6= k. Therefore

Js =

n∑
i=1

bixiJ = div(b(x))J

(b) Note that the problem is written wrong, errata! We’ll use characteristic equations.

ut + div(ub) = ut +Du · b + udiv(b)

We can read the equation as
F (Du, ut, u, x, t) = 0

where for q, y ∈ <n+1 and z ∈ <

F (q, z, y) = q · (b, 1) + zdiv(b) = 0

The derivatives are
DqF (q, z, y) = (b, 1)
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DzF (q, z, y) = div(b)

DyF (q, z, y) = 0

Thus the characteristic equations are
ẏ(s) = (b, 1)

zs(s) = ż(s) = (b, 1) · q = −z(s)div(b)

Since we are given the fact that ẋ = b(x), we can choose y(s) = (x(s), s)

claim: z(s)J(s) is a constant function.

proof: We use Euler Formula, which we proved in (a)

∂

∂s
(zJ) = zsJ + zJs = −zdiv(b)J + zdiv(b)J = 0

For given (x, t) ∈ <n × [0,∞), choose x(s) = x(s, x, t). Since zJ is constant

z(t)J(t) = z(0)J(0)

but
z(t) = u(x(t), t) = u(x(t, x, t), t) = u(x, t)

J(t, x, t) = detDxx(t, x, t) = detDx(x) = 1

so

u(x, t) = z(t)J(t)

= z(0)J(0)

= u(x(0, x, t), 0)J(0, x, t)

= g(x(0, x, t))J(0, x, t)

since u = g on <n × {t = 0}

7. NOTE: Before start reading the solution, the reader should read appendix C.1, and section
3.2.3, especially Lemma 1.

Define functions Φ and Ψ as in appendix C.1. Define v(y) = u(Ψ(y)) : V → < as in 3.1.3.a. Then by
(26), we have an equality

F (Dv(y)DΦ(Ψ(y)), v(y),Ψ(y)) = F (Du(Ψ(y)), u(Ψ(y)),Ψ(y)) = 0 (7.1)

Define function G : <2n+1 → < such that

G(q, z, y) = F (qDΦ(Ψ(y)), z,Ψ(y)) (7.2)

By 7.1, we have
G(Dv(y), v(y), y) = 0

Moreover V := Φ(U) is flat near x0 ∈ Γ. Thus by LEMMA 1, we have noncharacteristic boundary
condition

Gqn(q0, z0, y0) 6= 0

where y0 = Φ(x0) and q0 = p0DΨ(y0). By the definition of Φ

DΦ(x) =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
−γx1

−γx2
−γx3

· · · −γxn−1
1


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Let ci(x) define the ith column of the matrix. Then we have

∂

∂qn
(q · cj(x)T ) =

{
−γxj (x1, x2, ..., xn−1) for j = 1, 2, ..., n

1 for j = n

By equality in 7.2

Gqn(q, z, y) =
∂

∂qn
F (qDΦ(Ψ(y)), z,Ψ(y))

=

n∑
j=1

Fqj (qDΦ(Ψ(y)), z,Ψ(y))
∂

∂qn
(q · ci(Ψ(y)T ) (7.3)

In particular, when x is near x0, the equation xn − γ(x1, x2, ..., xn−1) = 0 defines the boundary for U .
Thus v(x0) = (−γx1

,−γx2
, ...,−γxn−1

, 1) is the normal vector at the point x0. Using 7.3

Gqn(q0, z0, y0) =

n∑
j=1

Fqj (q
0DΦ(Ψ(y0)), z0,Ψ(y0))

∂

∂qj
(q0DΦ(Ψ(y0)))

But by definitions of y0 and q0

Ψ(y0) = Ψ(Φ(x0))x0

q0DΦ(Ψ(y0)) = p0DΨ(x0)DΦ(x0) = p0

Thus
Gqn(q0, z0, y0) = Fp(p

0, z0, x0) · v(x0)

Therefore the noncharacteristic condition becomes

Fp(p
0, z0, x0) · v(x0) 6= 0

when Γ is not flat near x0.

8. (Note that there is an Errata in the statement of problem). We shall prove that the function u
which satisfies the condition

u = u(x, t) = g(x− tF′(u)) = g(x− tF′(u(x, t)))

provides implicit solution of the conservation law

ut + divF(u) = ut +Du · F′ = 0

Let’s calculate ut(x, t)

ut(x, t) =
∂

∂t
g(x− tF′(u))

=

n∑
i=1

gxi(x− tF
′(u))

∂

∂t
(xi − t(Fi)′(u))

=

n∑
i=1

gxi(x− tF
′(u))(−(Fi)′(u)− t(Fi)′′(u)ut)

= −Dg(x− tF′(u)) · F′(u)− tutDg(x− tF′(u)) · F′′(u)

Therefore

ut(x, t)

(
1 + tDg(x− tF′(u)) · F′′(u)

)
= −Dg(x− tF′(u)) · F′(u)
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Let’s define γ(x, t) = 1 + tDg(x− tF′(u)) · F′′(u) to make equation looks simpler. Basically,

ut(x, t)γ(x, t) = −Dg(x− tF′(u)) · F′(u) (8.1)

Let’s calculate divF(u) = Du · F′(u). For i = 1, 2, ..., n

uxi(x, t) =
∂

∂xi
g(x− tF′(u))

=

n∑
j=1

gxj (x− tF
′(u))

∂

∂xi
(xj − t(Fj)′(u))

= gxi(x− tF
′(u))(1− t(Fi)′′(u)uxi) +

n∑
j=1,j 6=i

gxj (x− tF
′(u))(−t(Fj)′′(u)uxi)

= gxi(x− tF
′(u))− tuxi

n∑
j=1

gxj (x− tF
′(u))(Fj)′′(u)

= gxi(x− tF
′(u))− tuxiDu(x− tF′(u))F′′(u)

Therefore
γ(x, t)uxi(x, t) = gxi(x− tF

′(u))

Thus

γ(x, t)divF(u) = γ(x, t)Du · F′(u)

=

n∑
i=1

γ(x, t)uxi(x, t)(F
i)′(u)

=

n∑
i=1

gxi(x− tF
′(u))(Fi)′(u)

= Dg(x− tF′(u))F′(u)

Using (8.1), we conclude that γ(x, t)

(
ut + divF(u)

)
= 0. If we are given that

γ(x, t) = 1 + tDg(x− tF′(u)) · F′′(u) 6= 0

we can say that ut + divF(u) = 0, i.e. the function u solves the conservation law.

9. NOTE: Before start reading the solution, the reader should know the proof of the THEOREM
1 (Euler-Lagrange Equations) in section 3.3.1.

(a) Let’s define S := {y ∈ C∞([0, t];<n)
∣∣y(0) = y(t) = 0} and i : < → < such that

i(τ) := I[x(·) + τy(·)] =

∫ t

0

L(ẋ(s) + τ ẏ(s),x(s) + τy(s))ds

Clearly for any y ∈ S and τ ∈ <, x+ τy ∈ A. Therefore i(τ) has minimum at τ = 0 for any fixed y ∈ P,
so we know i′(τ) = 0. As we see in the proof of the THEOREM 1

i′(τ) =

∫ t

0

n∑
i=1

Lvi(ẋ + τ ẏ,x + τy)ẏi + Lxi(ẋ + τ ẏ,x + τy)yi

Thus at τ = 0

0 = i(0) =

∫ t

0

n∑
i=1

Lvi(ẋ,x)ẏi + Lxi(ẋ,x)yids (9.1)
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By integration by parts

0 = Lvi(ẋ(t),x(t))yi(t)− Lvi(ẋ(0),x(0))yi(0)

=

∫ t

0

[
∂

∂s
Lvi(ẋ(s),x(s))yi(s)

]
ds

=

∫ t

0

[(
∂

∂s
Lvi(ẋ(s),x(s)

)
yi(s) + Lvi(ẋ(s),x(s))ẏi(s)

]
ds

Therefore ∫ t

0

Lvi(ẋ(s),x(s))ẏi(s)ds = −
∫ t

0

(
∂

∂s
Lvi(ẋ(s),x(s))

)
yi(s)ds

If we put this equality in (9.1), we find that

0 =

n∑
i=1

∫ t

0

[
− ∂

∂s
Lvi(ẋ(s),x(s)) + Lxi(ẋ(s),x(s))

]
yids

Since this equality is true for any smooth function y ∈ S, we conclude that

− ∂

∂s
Lvi(ẋ(s),x(s)) + Lxi(ẋ(s),x(s)) = 0

for all i = 1, 2, .., n. In other words, x(s) satisfies Euler-Lagrange Equations.

(b) Now consider the set P := {y ∈ C∞([0, t];<n)
∣∣y(t) = 0}. Clearly for any y ∈ P and τ ∈ <,

x + τy ∈ A, so i(τ) has minimum at τ = 0 for any fixed y ∈ P. Thus i′(0) = 0. By integration by parts

−Lvi(ẋ(0),x(0))yi(0) =

∫ t

0

[(
∂

∂s
Lvi(ẋ(s),x(s)

)
yi(s) + Lvi(ẋ(s),x(s))ẏi(s)

]
ds

Therefore∫ t

0

Lvi(ẋ(s),x(s))ẏi(s)ds = −
∫ t

0

(
∂

∂s
Lvi(ẋ(s),x(s))

)
yi(s)ds− Lvi(ẋ(0),x(0))yi(0)

If we put this equality in (9.1), we find that

0 = i′(0)

=

n∑
i=1

∫ t

0

[
− ∂

∂s
Lvi(ẋ(s),x(s)) + Lxi(ẋ(s),x(s))

]
yids−DvL(ẋ(0),x(0)) · y(0)

But − ∂
∂sLvi(ẋ(s),x(s)) + Lxi(ẋ(s),x(s)) = 0 by (a), so DvL(ẋ(0),x(0)) · y(0) = 0 for any y ∈ P, thus

DvL(ẋ(0),x(0)) = 0

(c) For any y ∈ S and τ ∈ <, x + τy ∈ A and g(x(0)) = g(x(0) + τy(0)). Define j : < → < such
that

j(τ) = i(τ) + g(x(0) + τy(0)) =

∫ t

0

L(ẋ(s) + τ ẏ(s),x(s) + τy(s))ds+ g(x(0) + τy(0))

By similar reasoning as in (a),

0 = j′(0) =

n∑
i=1

∫ t

0

[
− ∂

∂s
Lvi(ẋ(s),x(s)) + Lxi(ẋ(s),x(s))

]
yids

notice that we got rid of g(x(0) + τy(0)) since it is constant as τ changes. Therefore x satisfies Euler-
Lagrange equations.
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Now consider y ∈ P and define j(τ) in the same way. Then

j′(τ) = i′(τ) +
∂

∂τ
g(x(0) + τy(0)) = i′(τ) +Dg(x(0) + τy(0)) · y(0)

So at τ = 0, j′(0) = i′(0) +Dg(x(0)) · y(0). But from (b), we know

i′(0) =

n∑
i=1

∫ t

0

[
− ∂

∂s
Lvi(ẋ(s),x(s)) + Lxi(ẋ(s),x(s))

]
yids−DvL(ẋ(0),x(0)) · y(0)

= −DvL(ẋ(0),x(0)) · y(0)

since x satisfies Euler-Lagrange Equations. Therefore

0 = j′(0)

= −DvL(ẋ(0),x(0)) · y(0) +Dg(x(0)) · y(0)

=

(
Dg(x(0))−DvL(ẋ(0),x(0))

)
· y(0)

Since the equality is true for any y ∈ P, we must have DvL(ẋ(0),x(0)) = Dg(x(0)) as an initial condition
for minimizer x.

10. (a) Firstly, let’s remember Y oung′s Inequality: Let p, q ∈ (1,∞) and a, b ∈ [0,∞), then the
inequality

ap

p
+
bp

p
≥ ab

holds. By the definition,

L(v) = sup
p∈<n

{v · p−H(p)} = sup
p∈<n

{v · p− |p|
r

r
}

By Y oung′s Inequality and Cauchy′s Inequality, we know that |p|
r

r + |v|s
s ≥ |p||v| ≥ p · v, so

L(v) = sup
p∈<n

{v · p− |p|
r

r
} ≤ |v|

s

s
(10.1)

. If we put p = v|v| s−rr

v · p− |p|
r

r
= v · v|v|

s−r
r −

∣∣v|v| s−rr ∣∣r
r

= |v|
s+r
r − |v|

s

r
(10.2)

= |v|s − |v|
s

r

=
|v|s

s

At (10.2), we used s+r
r = sr

r = s. Thus L(v) ≥ |v|
s

s . Combining (10.1), we conclude that L(v) = |v|s
s .

(b) We need to determine

L(v) := H∗(v) = sup
p∈<n

{v · p−H(p)}
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(For the sake of the easiness of the notation, we assume that v and p are column vectors) Fix v and
define function f = fv : <n → < such that

f(p) = v · p−H(p) =

n∑
i=1

(vi − bi)pi −
1

2

n∑
i,j=1

aijpipj

Notice two things: f ∈ C∞(<n;R), and
∑n
i,j=1 aijpipj = pTAp. Assume that we also know f is bounded.

Then f must have maximum, i.e there exist p∗ such that f(p∗) = sup
p∈<n

f(p) = L(v). Since f is smooth,

p∗ must be a critical point, so we have Df(p∗) = 0. Let ci denote ith column of the matrix A (and also
ith row since A is a symmetric matrix). Then by simple calculation

∂

∂pi
f(p∗) = (vi − bi)− ri · p∗

Thus
Df(p∗) = v − b−Ap∗ (10.3)

Since A is a positive definite matrix, it is also invertible. So we can solve the equation (10.3) for
p∗ = A−1(v − b). Moreover, for this particular choice of p∗, Hess(f)(p∗) = −A, which is negative
definite, so p is actually local maximum. Since it is only critical point and we assumed f to be bounded,
p∗ must be the global maximum. Therefore

L(v) = f(p∗)

= (v − b) · p∗ − 1

2
(p∗)TAp∗

= (v − b) · (A−1(v − b))− 1

2
(A−1(v − b))TA(A−1(v − b)) (10.4)

= (v − b)T (A−1(v − b))− 1

2
((v − b)TA−1)A(A−1(v − b))

=
1

2
(v − b)TA−1(v − b)

At (10.4), we used that
(A−1(v − b)) = (v − b)T (A−1)T

and

(A−1)T = A−1A(A−1)T

= A−1AT (A−1)T

= A−1(A−1A)T

= A−1(I)T

= A−1

(briefly we proved that if A is symmetric, so is A−1) We only need to prove that f is bounded. Since
the function x→ xTAx is continuous and the set B(0, 1) ⊂ <n is compact, xTAx is bounded on the set
B(0, 1). Assume xTAx > M for |x| = 1. Since A is positive definite, we can choose M > 0. Let p1 = p

|p|

f(p) = (v − b) · p− pTAp
≤ |v − b||p| − |p|2pT1 Ap1 (by Cauchy’s Inequality)

< |v − b||p| −M |p|2

=
1

M
M |p|(|v − b| −M |p|)

≤ 1

M

|v − b|2

4
(by Aritmetic-Geometric Mean Inequality)

Thus f is bounded, so we are done.
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11. Assume that v ∈ ∂H(p). Let’s prove p · v = H(p) + L(v). For any r ∈ <n

r · v −H(r) ≤ r · v − (H(p) + v · (r − p)) = v · p−H(p)

Thus
L(v) = sup

r∈<n
{v · r −H(r)} ≤ v · p−H(p)

but for r = p, v · r −H(r) = v · p−H(p), so L(v) = v · p−H(p).

Now assume that p · v = H(p) + L(v), we’ll prove v ∈ ∂H(p). For any r ∈ <n

v · p−H(p) = L(v)

= sup
s∈<n
{v · s−H(s)}

≥ v · r −H(r)

So
H(r) ≥ H(p) + v(̇r − p)

thus v ∈ ∂H(p). Since we have duality between L and H

v ∈ ∂H(p) ⇐⇒ p · v = H(p) + L(v) ⇐⇒ p ∈ ∂H(v)

12. First observe that

max
p∈<n

{−H1(p)−H2(−p)} = −min
p∈<n

{H1(p) +H2(−p)}

so we need to prove
min
v∈<n

{L1(v) + L2(v)}+ min
p∈<n

{H1(p) +H2(−p)} = 0

By definition of H1 = L∗1 and H2 = L∗2, for all p ∈ <n

H1(p) +H2(−p) = sup
v1∈<n

{v1 · p− L1(v1)}+ sup
v2∈<n

{−v2 · p− L2(v2)}

≥ sup
v∈<n

{−L1(v)− L2(v)}

= −min
v∈<n

{L1(v) + L2(v)}

Therefore we have
min
p∈<n

{H1(p) +H2(−p)} ≥ −min
v∈<n

{L1(v) + L2(v)}

so we proved
min
v∈<n

{L1(v) + L2(v)}+ min
p∈<n

{H1(p) +H2(−p)} ≥ 0

Next we prove that it is also ≤ 0. First let’s remember some facts about Hamiltonian and Lagrangian.

Lemma (THEOREM 3 at 3.3.2) The three statements

p · v = L(v) +H(p)

p = DL(v)

v = DL(p)
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are equivalent, provided that H = L∗, L is differentiable at v and H is differentiable at p.

Assume that L1(v) + L2(v) obtains its min at v∗. In other words

min
v∈<n

{L1(v) + L2(v)} = L1(v∗) + L2(v∗)

Then we must have 0 = D(L1 + L2)(v∗) = DL1(v∗) +DL2(v∗) = 0. Choose

p∗ = DL1(v∗) = −DL2(v∗)

then by the Lemma,
L1(v∗) +H1(p∗) = v∗ · p∗

L2(v∗) +H2(−p∗) = −v∗ · p∗

so

min
v∈<n

{L1(v) + L2(v)}+ min
p∈<n

{H1(p) +H2(−p)} ≤ L1(v∗) + L2(v∗) +H1(p∗) +H2(−p∗)

= v∗ · p∗ − v∗ · p∗

= 0

thus we are done.

13. Define function f(y) = tL(x−yt ) + g(y) and assume f takes its minimum at y0. Then we

must have Df(y0) = 0. But we know Df(y) = tDL(x−yt )−1
t + Dg(y) = Dg(y) −DL(x−yt ), so we have

DL(x−y
0

t ) = Dg(y0). Then by the Lemma from the problem 12

DH(Dg(y0)) =
x− y0

t

but we are given

R ≥ |DH(Dg(y0))| = |x− y
0|

t

which means y0 ∈ B(x,Rt). Thus we must have

min
y∈<n

{tL(
x− y
t

) + g(y)} = min
y∈B(x,Rt)

{tL(
x− y
t

) + g(y)}

so we are done.

14. We have Hamiltonian H(p) = |p|2. Let’s determine L := H∗.

Claim L(v) = |v|2
4 for all v ∈ <n

Proof By Arithmetic Mean-Geometric mean and Cauchy inequalities, we have

v · p−H(p) = v · p− |p|2 ≤ |v||p| − |p|2 ≤ (
|v|2

4
+ |p|2)− |p|2 =

|v|2

4

for all p ∈ <n. Thus we have L(v) ≤ |v|
2

4 . But for p∗ = v
2 , p∗ · v − |p∗|2 = |v|2

4 , so we have L(v) = |v|2
4 .

Let’s apply Hopf-Lax formula for u.

u(x, t) = min
y∈<n

{tL(
x− y
t

) + g(y)}

= min
y∈<n

{ |x− y|
2

4t
+ g(y)}
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Since g(y) = u(y, 0) is given in the problem as

g(y) =

{
0 if y ∈ E
∞ if y /∈ E

u(x, t) = min
y∈<n

{ |x− y|
2

4t
+ g(y)}

= min
y∈E
{ |x− y|

2

4t
}

=
1

4t
dist(x,E)2

15. We shall fill the gaps in the Lemma 4 from 3.3.3. Let’s prove (36). Define function H ′(p) =
H(p)− θ

2 |p|
2, then for all ξ ∈ <n

ξTHess(H ′)(p)ξ =

n∑
i,j=1

Hpipj (p)ξiξj − θ|ξ|2 ≥ 0

thus H ′ is a convex function. So we have

H(
p1 + p2

2
) = H ′(

p1 + p2

2
) +

θ

8
|p1 + p2|2

≤ 1

2
H ′(p1) +

1

2
H ′(p2) +

θ

8
|p1 + p2|2 (since H ′ is convex)

=
1

2
H(p1)− θ

4
|p1|2 +

1

2
H(p2)− θ

4
|p2|2 +

θ

8
|p1 + p2|2

=
1

2
H(p1) +

1

2
H(p2)− θ

8
(2|p1|2 + 2|p2|2 − |p1 + p2|2)

=
1

2
H(p1) +

1

2
H(p2)− θ

8
|p1 − p2|2

so we proved (36). Let’s prove (37). Assume that

L(v1) = p1v1 −H(p1)

L(v2) = v2p2 −H(p2)

So
1

2
L(v1) +

1

2
L(v2) =

p1v1 + p2v2

2
− 1

2
H(p1)− 1

2
H(p2) (15.1)

L(
v1 + v2

2
) +

1

8θ
|v1 − v2|2 ≥ v1 + v2

2

p1 + p2

2
−H(

p1 + p2

2
) +

1

8θ
|v1 − v2|2

≥ (v1 + v2) · (p1 + p2)

4
− 1

2
H(p1)− 1

2
H(p2) +

θ

8
|p1 − p2|2 +

1

8θ
|v1 − v2|2 by (36)

=
1

2
L(v1) +

1

2
L(v2)− (v1 − v2)(p1 − p2)

4
+
θ

8
|p1 − p2|2 +

1

8θ
|v1 − v2|2 by (15.1)

≥ 1

2
L(v1) +

1

2
L(v2)− (v1 − v2) · (p1 − p2)

4
+
|p1 − p2||v1 − v2|

4
(15.2)

≥ 1

2
L(v1) +

1

2
L(v2) by Cauchy’s inequality

Note that at (15.2), we used Arithmetic-Geometric Mean Inequality.
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16. Assume that

u1(x, t) = tL(
x− y1

t
) + g1(y1)

u2(x, t) = tL(
x− y2

t
) + g2(y2)

Thus

u1(x, t)− u2(x, t) = min
y∈<n

{tL(
x− y
t

) + g1(y)} − tL(
x− y2

t
) + g2(y2) put y = y2

≤ tL(
x− y2

t
) + g1(y2)− tL(

x− y2

t
)− g2(y2)

= g1(y2)− g2(y2)

Similarly
u2(x, t)− u1(x, t) ≤ g2(y1)− g1(y1)

So either |u2(x, t)− u1(x, t)| ≤ |g2(y1)− g1(y1)| or |u1(x, t)− u2(x, t)| ≤ |g1(y2)− g2(y2)|. In each case,

|u1(x, t)− u2(x, t)| ≤ sup
<n
|g1 − g2|
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