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Edition). The document prepared under UCLA 2016 Pure REU Program.

On Poisson’s Formula for Balls, p.40-41

The book does Poisson’s Formula for the unit ball, then uses change of variables to generalize for
any ball centered at the origin. We’ll complete the proof and it will help the reader to understand better
the concept of surface integral.

We suppose that u : B(0,7) — R is harmonic in B°(0,r). Fix x, and define @ : B(0,1) — R with
(y) = u(ry) for all y € B(0,1). Then

u(ra) = ae) = L0 [ s - L Jaf [ s

na(n) Jopou |z —y" na(n) Jopeu [z =y

Denote B"~1(0,1) to show the unit ball in ®*~! and § = (y1,%2,...,Y¥n_1) to show variable in R"~1.
Define functions v, 4% : B*=1(0,1) — dB(0, 1) such that

V@) = (H @), 3@ oo @) = W12, s Y1, (1= [512)7)

in other words,
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YY1, Y2s oy Y1) = (Y15 Y25 oy Y1, (L — 112 — 927 — oo — Yn—1?)

)

and similarly )
’72(g) = (7%(@)773(@)7 772(1&)) = (yluy27 vy Yn—1, (1 - |g‘2)§)

It is clear that Im(y') U Im(y?) = 9B(0,1), and Im(y') N Im(y?) = 8B(0,1) N {y, = 0} so that
Im(yY) N Im(+?) is (n — 2) surface in R". Therefore

u(ry) _ u(ry) u(ry)
/63(071) |z — y|nds(y) = /zmw) o — y|nds(y) + /Imw) T y|ndS(y) (2)

The Jacobian matrix of 7! is

1 0 0 0 0
0 1 0 0 0
DY (Y1, 925 ey Y1) =
0 0 0 e 0 1
—Y1 —Y2 —Y3 .. “Yn-—2 “Yn-—-1
@ @ i@ 75 () T (9)

By simple row and column operations, one can calculate
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det((D¥)YT . D~yY) = — = —
((Br?) ) (@2 1—|gf?




Let f(y) = ulry) Therefore, the surface integral is

= Jz—yle

u(ry) B
/Im(’yl) lz —y[ ds(y) = /Im(yl) f(y)dS(y)
- / f(’Yl(g))\/det((D’yl)T - DyY)dg
Bn=1(0,1)
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Here djj = dyidys...dy,_1. Now we will use Changeof Variables Formula. Let ¢ : B"~1(0,r) —
B"1(0,1) such that

and let

fOH@) _ u(ry () 1
(1 g2z e =@ Q- (g2)2
Clearly ¢ is onto and det(D¢) = —=r, so we have

) ———dj = h(§)dj
/BM(o,nf(7 ST EE /<Bn oy O
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Bn—1( Or)
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Let ¢! : B"71(0,r) — 8B(0,r) such that
VHG) = (1,0, e thy) = Tvl(%) = (Y1 Y2y s Y15 (12 — 43 — 93 — . —y2_1)%)
Then by (3) and (4)
u(ry) e 1 _
dsS(y) = — 4
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Define 1? similarly, then

u(ry) u(@*(y) 11
as() = [ L d
/Im(A/?) |$ - y‘n Br=1(0,r) |l‘ - @ln w%(y) 2
Therefore,

a(re) = =1 /8 ) 450 by (1)

na(n) Jopo1) |=T - y|”

_ e
" na(n) (/m(7 = yln )+ /Im(72 Py yln dS(y)) by (2)

_ 1z w'(@) 11 w@(@) 1 1
" na(n) (/Bn vo) o — LD gL (g) T d“/ml(o,r) - @ g2 )

T




Put < in the place z, then

wz) = TP w@'@) 11 w@?@) 11
() = na(n) (/Bn—l(om) = @Vl L(7) rn—zder/Bn_l(Q - ’”i(y)ln D2 () T 5dY)
o=z u@l(y) 1 w(P(7)) )
= naln) (/Bwo,r) T @ UL >dy+/3n vom - RO EH Y

Realize that ¢ : B"~(0,7) — 0B(0,r) defines the surface integral, as we did at (3).The only difference
is det((Dy!)T Dyt) = (%T(Z.G)P = TQETW. So we have

W) uly)
/. o [T G 0L >dy‘/1m<w1> Ty oW

u(@*(y) u(y)
/B“l<o,r) [z —p2(9)|" YE(9) W= /,m(d,z) Iz — y|nd5(y)

Note that Im(¢') = 0B(0,7) N {z,, > 0} and Im(x)?) = dB(0,7) N {x, < 0}. Therefore

and

e W @) 1 W(W2@) 1
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r? — |z|? u(y)
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so we are done.

On Heat Ball

In this part, we shall develop more explicit description for Heat Ball, and use this new definition to
prove the equality (1) (see below). Let @ : R™ x (0,00) — R be the fundamental solution of the heat

equation, defined to be
—lz|?

e 4t

O(z,t) =

(47t) s
The Heat Ball E(x,t;r) in R™ x R is defined as

1
E(z,t;r) = {(y,s) € R s <, @(x —y, t —s5) > —}
T?’l

The concept of Heat ball is important, since the functions that solves the heat equation u; — Au = 0
satisfies Mean-Value Property

u(z,t) = L/ u(y )| _y|2dyds
’ 4rm E(x,t;r) ’ (t )

(Theorem 3 in chapter 2.3). Mean Value Property is used in the proof of Maximal principle. In the proof
of Mean Value Property, the book uses an equality that

/ |y|2dyds =4 (1)
2
E(0,0;1) 9§

but does not give a proof. We shall prove the equality. First, let’s give a more discrete definition for
E(x,t;r). Fix s <'t, then

(y;5) € E(x,t;7)



2

2n(t — s)log(m

As a first observation, we must have

so we have

t r <s<t
——<s
dr — T

Define «y(t,7;s) = (Qn(t—s)log(ﬁz_s)))%. Then the equation (2) becomes y € B(z,7(t,7;s)). Therefore

we can define the heat ball as
E(z,t;7) = {(y,8) € §R"+1|t — % <s<t,y€ B(x,v(t,r;s))} (3)
so we have now more precise definition than in the book.
Let’s prove the equality (1). We know that
B(0,0:1) = {(.5) € R™H| - ﬁ <5<0,ye B0,7(0,1:5)}
To make the notation simpler, change s — —s, and define
E'={(y,s) € W“% >5>0,y€B(0,7(0,1;—s))}

then by change of variables, we have

2 2
/ %dyds:/ %dyds
r S E(0,0;1) S



Define (s) = v(0,1; —s) = (2nslog(ﬁ))%7 then we have

2 = 2
/ |y|2 dyds = / / %dyds
B S 0 JB(0,8(s) S
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Note that we used polar coordinates at (4). Let’s use change of variables again, define ¢(s) = 1, then
we have ¢/(s) = — 27, so we have the equality
1
T p_2 1 n+2 1 a2 ntz 1
22 (log(—)) Fds = ) log(s)F ——d
|7 s s = [ () T s s
1 o 1 n+2 n+2
= — Y2l = d
o | (5T st s

Therefore we have equality

|y|2 n n+2 1 /OO 1 n+2 n+2
7dd :72 2 — —_ 21 2 d
[, aus = s n) o) e [0 F st s

Before going further, let’s remember the definition of a(n). The constant «(n) represents the volume of
the unit ball in ", and we know it actually equals

oz
=)
where
I'k) = (k—1)!
and

2k+1, (k-1 —  (2k—1)(2k—3)..1
y )= VTS 2k v

(See "Notes on Partial Differential Equations”, Chapter 1.6 (Averages), by John K. Hunter). So it is

enough to prove that
<1 nt2 n+2 2%F(ﬂ)<n+2)
[ @ P Fas =21
1

S n- 2

I(

to get (1). We shall consider 2 cases, either n is even or odd.

Case 1: n is even, say n = 2k. Then (6) becomes

1 (k+1)!
/1 (g)kJrllOg(s)kJrldS — W

To compute LHS, we first introduce a lemma.



Lemma Form=1,2,...k+1

/100(1)k+110g(8)md8 — % zm(i)k+110g(8)7rl_lds (7)

s
Proof . (
0 s Mlog(s)™, .4 L m—1
5 ) = s log(s)™ + -s7"og(s)
Clearly at s =1, ﬂ%(s) =0 and as s — oo, % — 0, therefore

* 9 s Flog(s)™ < m [ .
0 /1 s . ds /1 s og(s)™ds + A /1 s og(s)™ *ds

so we prove (7).

Now apply lemma for m = k + 1, k, ..., 1 respectively, then

~ 1 E+1 [ 1
/1 (g)k+110g(8)k+1d3 = T 1 (g)k-‘rllog(s)kds
(k+ 1)k /°° 1os o1
= LTP S Las|
[ ) on(s) s

(k) /w(l)kﬂds
1

kk+1

S
B (k+1)!( 1 °°)
Lk+1 kesk|,_,
(k4 1)
Lk+2

so we prove (6) for even n’s.

Case 2: n is odd, say n = 2k — 1. Then (6) becomes

1 2kt 2k+1 2k + DI 2m
/ (=) 2 log(s) 2 ds = Zh ¥ DUVaT (8)
1

2k+3

s 2k — 1)%5

We use a lemma as in Case 1 to compute LHS

Lemma For m =k, k—1,...,0

1. 2k41 2m+1 2m+1 [ 1. 2k+1 2m—1
V2] 2 ds = VY72 1] 2 d
T ot s = 2L [ )5

We won’t prove the lemma since it is very similar with the other lemma in Case 1. Apply lemma for
m =k, k —1,...,0 respectively, then

1, 2k 2k +1 [, 1 2k _
/1 (;)2k2’+llog(s)2k2‘+lds = 72ki1/1 (;)%log(s)%ds
2k +12k—1 1 2kt 2k—3
- 2k—12k—1/1 (5) 7 logls) = ds

. (2k‘+ 1)” /oo 1)2k+1 —1
k=1 ),

1 2kt1 -1 2w
)"z ] = =
[ ot 3 s =[5

So it is enough to prove




to get (8). Let’s use change of variables for the function s — 682, clearly the derivative is 28682, SO we
have an equality

0 q B o -
/ (=) log(s) T ds = / (=) " log(e®’) = 2se* ds
1 0 e’
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o0 1 =
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So we need to prove that

which is equivalent to
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so we prove (9). Thus we prove (1) for even n’s. Note that at (10) we used polar coordinates.
On Strong Maximal Principle for the Heat Equation

In the proof of ”Strong Maximal Principle for the Heat Equation” (THEOREM 4 at 2.3.3), the book
says that for each point (xg,t) € Up, there exist sufficiently small 7o > 0 such that E(zq,to;r0) C Ur.
This statement is not obvious, so let’s give a proper proof for it. By (3), we already know that

2

r
E(l‘o,to;?‘) CR" x [to — E’t(ﬂ

We need to find a proper upper bound for 7(to, r;s), when tg and r are fixed and s is the only variable.
Let’s define a new variable

a= w € [0,1]
since s € [to — 4—,t0]. Thus we have
2
Y(to,m38)% = 2n(ty — s)log(m))
-

alog(1) is a smooth function in (0,1), and lim alog(1) = lim alog(1) = 0 so alog(2) obtains its max in
a—0 a a—1 a a

£0,1)7 where the derivative is 0. But Zalog(1) =log(%) — 1, so alog(%) obtains its max at a = 1, so we
ave



thus

(to,735) <7y [ 5

7,8 T

Yo, T, = 2em

E(xo, to;r) C B( Syt ﬁt]
To,lo;T o, T 2em 0 47'(, 0

Now it is easier to see why we can choose sufficiently small ro such that E(xg,to;70) C Ur.

combining with (3), we have
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